a1 57 367 EF1598

Hands-On
Software Architecture

with Java

Learn key architectural techniques and strategies to
design efficient and elegant Java applications

A o

Giuseppe Bonocore

1V

Hands-On
Software
Architecture
with Java

Learn key architectural techniques and strategies to
design efficient and elegant Java applications

Giuseppe Bonocore

Packh

BIRMINGHAM—MUMBAI

Hands-On Software Architecture with Java
Copyright © 2022 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Richa Tripathi
Senior Editor: Nisha Cleetus

Content Development Editor: Rosal Colaco
Technical Editor: Maran Fernandes

Copy Editor: Safis Editing

Project Coordinator: Manisha Singh
Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Joshua Misquitta

Marketing Coordinator: Pooja Yadav

First published: February 2022
Production reference: 1100222

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-730-1

www . packt .com

Contributors

About the author

Giuseppe Bonocore is a solution architect dealing with application development, Java
technology, JBoss middleware, and Kubernetes projects since 2014. He has more than 10
years of experience in open source software, in different roles. His professional experience
includes Red Hat, Accenture, and Docomo Digital, covering many technical leadership
roles and deploying huge open source projects across Europe.

I want to thank the people who have been close to me and supported me,
especially my wife.

About the reviewer

Andres Sacco is a technical lead at MercadoLibre and has experience in different
languages, such as Java, PHP, and Node.js. In his previous job, he helped to find alternative
ways to optimize the transference of data between microservices, which helps to reduce
the cost of infrastructure by 55%. Also, he has dictated some internal courses about new
technologies, and he has written some articles on Medium.

Stefano Violetta is a creative backend developer with over 14 years of expertise in
software development and architecture, managing all stages of the development cycle; he
has worked in many different companies, from start-ups to tech giants such as eBay. He
likes putting together well-written code that helps to create advanced applications that
are fit for purpose, functionally correct, and meet the user's precise needs. On a personal
level, he possesses really strong interpersonal skills, being respectful and collaborative. He
lives (and works) in the suburbs of Milan, Italy, with his wife and two kids. When he isn't
dealing with software, he likes to read and watch movies.

Table of Contents

Preface

Section 1: Fundamentals of Software

Architectures
1

Designing Software Architectures in Java - Methods

and Styles

The importance of

software architecture

The objectives of architecture
design in the software life cycle

The software architect - role

and skills

Is architecture design still relevant in
modern development?

Different types of architecture
design - from doodling on
paper to more accurate
modeling

Sketching the main architectural
components

Other kinds of architectural
diagrams

Common types of architectural
diagrams

10

The changing role of Java

in cloud-native applications
Why Java technology is still
relevant today

Java usage in enterprise
environments

JEE evolution and criticism
Introducing cloud-native Java
The Java microservices
ecosystem

Case studies and examples

Case study - mobile payments
Whiteboarding the overall
architecture

Software components
diagram

Summary

Further reading

13

13

14
15
17

19
20
20

21

22

24
25

viii Table of Contents

2

Software Requirements - Collecting, Documenting, Managing

Introducing requirements The 830-1998 standard 46
engineering 29 The 29148 standard 47
iea:ure, Ad\;a:tafe., ar|1d Benefit 29 Collecting requirements -
eatures and technica formats and tools 48
requirements 31)
Types and characteristics of SoftV\I/Iare requirements data -
requirements 32 toco e.ct)
The life cycle of a requirement 34 Follectmg software requirements
in spreadsheets 50
Discovering and collecting Specialized tools for software
requirements 36 requirements management 50
The lean canvas 37 Spreadsheets versus tools 51
E"e”tjmrmi”g 39 validating requirements 52
More discovery practices 41 .
P Case studies and
Analyzing requirements 43 examples 53
Checking for coherence and The mobile payment application
feasibility 43 example 53
Checking fi licit d .
ecxing for explicitness an Event Storming for peer-
testability 44 t t 56
Checking non-functional o-p?er payments
requirements and constraints 44 Requirements spreadsheet 57
Specifying requirements Summary 58
according to the IEEE Further reading 58
standard 45
Common Architecture Designh Techniques
Introducing marchitectures Class diagrams 65
- impactful and purely Sequence diagram 66
demonstrative schemas 60 Wrapping up on UML 67
Familiarizing ourselves . :
. . Exploring ArchiMate 67
with UML notation 61 P 'g
. The ArchiMate Core and
Understanding the background Full Erameworks 68
to UML 62

Table of Contents ix

Navigating the ArchiMate DMN 78
language tree 70 arc42 78
Comparing ArchiMate to UML 72 .
Comparing ArchiMate to TOGAF 73 Case studies and
examples 79
Introducing the C4 model 73 UML class diagrams for mobile
Exploring the C4 model 73 payments 79
Filling in the different levels 75 C4diagrams for mobile
. payments 81
Other modeling
techniques 76 Summary 84
BPMN 76 Further reading 84
Best Practices for Design and Development
Understanding Domain Comparing DDD, TDD,
Driven Design 86 and BDD 100
The anemic domain model 87 Learning about user
Understanding ubiquitous story mapping 100
language 87 The MVP 103
Getting familiar with layered N
architecture 89 Case studies and
Learning about the domain examples 103
model 91 . .
. The mobile payments domain
Glancing at DDD patterns 94 model 104
Bounded Context 95 The layered architecture of
Introducing Test Driven mobile payments 104
Development 97 EDD of mobile p:?\ymefnts . 106
. . ser story mapping of mobile
Explorlng Behavior payments 107
Driven Development 99
Summary 109
Further reading 109
Exploring the Most Common Development Models
Learning about Code Glancing at the Waterfall
and Fix 112 model 113

x Table of Contents

Advantages and disadvantages Advantages and disadvantages
of the Waterfall model 115 of Scrum 129
Understanding the Agile Learning about other
methodology 116 Agile practices 130
The Agile principles 117 Kaizen 130
A Planning Poker 131
Introducing Lean Kanban board 132
software development 118 o rndown chart 133
Eliminating waste 118
Deciding as late as possible 121 Understanding DevOps
Delivering as fast as possible 121 and its siblings 135
Optimizing the whole product 122 DevOps team size 135
Pros and cons of Lean Roles and responsibilities in
development 122 a DevOps team 136
. Devs, Ops, and more 137
Exploring Scrum 123 DevOps and the bigger
Understanding the Scrum organization 138
teams 124 pros and cons of DevOps 139
Learning about Scrum Events 125
Understanding Scrum Case studies and examples 140
artifacts 128 Summary 140
Further reading 141

Section 2: Software Architecture Patterns
6

Exploring Essential Java Architectural Patterns

Encapsulation and Client-side MVC 154
hexagonal architectures 146 . .
. | architect p Diving into event-driven

€Xagona architeccures an and reactive approaches 154
Domain Driven Design 148 o
Encapsulation and microservices 148 Defining events, commands,

and messages 155

Learning about multi-tier Introducing the event-driven
architectures 149 pattern and event-driven
Exploring Model View architecture 156
Controller 151 Designing for large-scale

Server-side MVC 153 adoption 163

Table of Contents xi

Defining performance goals 163 Encapsulating with a
Stateless 166 hexagonal architecture 171
Data 167 Componentizing with
Scaling 169 multi-tier architecture 172
) Planning for performance
Case studies and and scalability 174
examples 170
Summary 176
Further reading 177
Exploring Middleware and Frameworks
Technical requirements 180 MicroProfile specifications 201
L?;rnoddal:_f;ng the JEE 180 Exploring Quarkus 202
o)) Better performances 203
Diving into JEE implementations 181 Developer joy 203
Introducing the WildFly Quarkus - hello world 204
application server 182 Building techniques with
Exploring the WildFly Quar.kus) 206
architecture 182 Configuration management
Running the WildFly server 184 in Quarkus 207
Understanding the most M‘:St common Quarkus 208
common JEE APIs 185 ~ €xtensions
Dependency injection 185 Content Dependency Injection 208
Jakarta RESTful Web Services 188 REST services with JAX-RS 209
WebSocket 192 WebSockets 209
Messaging 193 Messaging 210
Persistence 195 Persistence 211
What's missing in Java EE 196 Accelerated ORM development
with Panache 211
What's great about Java EE 198
. Quarkus and the
Sﬁtlgfp?;)éogg tJi?)\;a 198 MicroProfile standard 214
Packaging microservices Case studies and examples 214
applications 199 Summary 222
Introducing MicroProfile 200 Eurther reading 223

xii Table of Contents

8

Designing Application Integration and Business Automation

Integration - point-to-point SOAP and REST 257
versus centralized 226 gRPC 258
Understanding service-oriented GraphQL 261
architecture 227 .
. : Introducing data
Enterprise service bus - what . .
and why? 557 integration 262
Integration in the cloud-native Cgmpleti_ng the picture
world 230 with business
Citizen integration 232 automation 264
L. X . Business rules 266
P'ggmg !nto enterprise Business workflows 268
integration patterns 232
Message routing 233 Integration versus
Message transformation 236 aUtomatlo_n - where to
System management 23 draw theline 27
Messaging 242 Case studies and
) examples 272
Exploring formats 250 .
Integrating payment
XML 250 capabilities 272
JSON 253 Automating customer
Protobuf 255 onboarding 276
Exploring communication Summary 280
protocols 257 Further reading 281
Designing Cloud-Native Architectures
Why create cloud-native Twelve-factor apps and the
applications? 284 supporting technology 302
Learning about types of Well-known issues in the
cloud service models 286 cloud-native world 305
Introducing containers and Fault tolerance 305
Kubernetes 288 Transactionality 309
Defining twelve-factor Orchestration 31
applications 297

Table of Contents xiii

Adopting microservices
and evolving existing

Refactoring apps as
microservices and

applications 314 serverless 320

Going beyond The five Rs of application

microservices 318 modernization 320

Miniservices 318 Thestrangler pattern 324

Serverless and Function as a Important points for

Service 319 application modernization 327
Summary 329
Further reading 330

Implementing User Interaction

User interface Learning about mobile

architecture - backend application development 350

versus frontend 332 The importance of mobile

Web user interface using applications 350

Jakarta Server Pages and The challenges of mobile

Jakarta Server Faces 333 application development 351

Introducing basic Java web Mobile application

technology - Jakarta development options 351

server Pages 333 Exploring IVR, chatbots,

JSP - the downsides 337 and voice assistants 353

Jakarta Server Faces - a complex Int ti . 353

JEE web technology 338 nhersc Ive voice response

JSF - the downsides 339 ¢ 'at ots. 354
Voice assistants 355

Introducing single-page . .

applicatior;gs gle-pag 340 Omnichannel strategy in

)) enterprise applications 355

Basics of the JavaScript

ecosystem 3417 Summary 357

Introducing the React framework 342 Further reading 357

Dealing with Data

Exploring relational Keys and relationships 360

databases 360 Transactionality 362

xiv Table of Contents

Stored procedures 363 Exploring NoSQL

Commonly used implementations repositories 371

of relation databases 364 The CAP theorem 372

Advantages and disadvantages NoSQL database categories 374

of relational databases 366

) Looking at filesystem

Introducing key/value storage 374

stores)) 367 The advantages and

Data caching techniques 368 disadvantages of filesystems 375

Data life cycle 369

Commonly used implementations MOd.e”f‘ approaches - a

of key/value stores 370 ~multi-tier storage

The pros and cons of strategy 376

key/value stores 370 Summa ry 377
Further reading 378

Section 3: Architectural Context

Cross-Cutting Concerns

Identity management 382 Security standards and

Authentication 3g3 regulations 391

f;uthorizatidon 386 Resiliency 392

Identity and Access .

Management 387 Uptlme. . 392
Increasing system resiliency 394

Security 388 Further techniques for

Intrinsic software security 3g9 improving reliability 395

Overall application security 390 Summary 399
Further reading 399

Exploring the Software Life Cycle

Technical requirements 402 Testing 407

Source Code Unit testing 407

Management 402 Beyond unit testing 412

Introducing Git 402

Table of Contents xv

Further testing

Continuous integration/

considerations 415 continuous delivery
. and deployment 422
Deploying 419 (pioy)
o Common CI/CD software

Building the code 413 implementations 423

Managing artifacts 420

Completing the Releasing 424

deployment 421 Maintenance 428
Summary 429
Further reading 430

Monitoring and Tracing Techniques

Technical requirements 432 Defining application health

Log management 432 checks 439

Common concepts in Application Performance

logging frameworks 433 Management 445

Log aggregation 436 service monitoring 446

Collecting application Summary 448

metrics 437 Further reading 448

What's New in Java?

Java versioning 450 Strongly encapsulating

Vendor ecosystem 451 JDKinternals 455
More changes in

What's new in Java 17 453 Java17 455

Sealed classes 453

Pattern matching for switch Summary . 457

statements 454 Further reading 457

Index

Other Books You May Enjoy

64157 367EF198

Preface

Despite being a technology born in 1995, Java is still alive and well.

Every now and then, an article pops up saying that Java is old and should be dismissed
and replaced by other languages. But the reality is, Java is here to stay.

There are many reasons for that, but the most important is that it just works: it solves
common issues in the software development world so well.

Java technology is the main topic of this book. However, in each of the chapters, we will
have the opportunity to talk about many different ideas, and I think that most of them go
beyond the Java programming language and are likely to be useful in other situations too.

Indeed, in this book, I've tried to distill concepts around many aspects of software
development, particularly development in the enterprise world, in big and complex
businesses and projects. The goal is to give you insights by focusing on the most important
topics. Of course, given the breadth and complexity of the topics, it would be impossible
to take a deep dive into every aspect. But you will be provided with some good starting
points, and you can easily find more resources if you want further details.

Following more or less the timeline of a typical software project, we will start with
the fundamentals of software architecture, from requirement gathering to modeling
architecture basics. We will also look at the most common development models,
including, of course, DevOps.

In the second section of the book, we will explore some common software architecture
patterns. This will include Java architecture patterns, as well as middlewares (both for
traditional and cloud-native approaches) and other essential parts of software architecture,
such as integration, user interfaces, and data stores.

In the third and final section of the book, we will cover some additional topics, including
cross-cutting concerns (such as security, monitoring, and tracing) as well as some
considerations around software life cycle management. Finally, we will have a quick look
at the latest version of the Java technology.

xviii Preface

Who this book is for

This book is for Java software engineers who want to become software architects and learn
the basic concepts that a modern software architect needs to know. The book is also for
software architects, technical leaders, engineering managers, vice presidents of software
engineering, and CTOs looking to extend their knowledge and stay up to date with the
latest developments in the field of software architecture.

No previous knowledge is required, and even if you are already familiar with the Java
language and the basic concepts of software development, you will still benefit from this
book's recap of the different architecture-related topics.

What this book covers

Chapter 1, Designing Software Architectures in Java - Methods and Styles, introduces the
approach toward the examples that we will take throughout this book. We will introduce
a number of different scenarios and some real-world examples, in order to clarify abstract
concepts and shift our point of view toward implementation.

Chapter 2, Software Requirements — Collecting, Documenting, Managing, explains some
techniques for requirement gathering and some tools to document and track them.

Chapter 3, Common Architecture Design Techniques, covers the most commonly used
architecture definition formats and the goals they aim to achieve. We will look at an
example application, described using different architecture diagrams. Moreover, we will
walk through some examples of modeling use cases using BPMN and a business rule
using DMN.

Chapter 4, Best Practices for Design and Development, is where we will have a look at the
different methods that can be used to help us with both our understanding of the overall
solution and the implementation of it.

Chapter 5, Exploring the Most Common Development Models, is where we will have an
overview of the most common software development models and their implications,
including more traditional and historical ones (such as waterfall) as well as more modern
approaches such as agile and DevOps.

Chapter 6, Exploring Essential Java Architectural Patterns, looks at architectural patterns.
There are some architecture patterns that are so common that they have become more or
less standard. While sometimes being overused, these architectures must be considered
as basic building blocks that we need to know about in order to solve common
architectural problems.

Preface

Xix

Chapter 7, Exploring Middleware and Frameworks, is where we will see how to use
middleware and frameworks, understanding their role in designing and building
our architecture.

Chapter 8, Designing Application Integration and Business Automation, is where, as a
follow-up to the previous chapter, we will see two typical middleware implementations.
Indeed, application integration and business automation are two commonly used
middleware functions, used to build efficient and reusable enterprise architectures.

Chapter 9, Designing Cloud-Native Architectures, is where we will have a look at what a
cloud-native application is, what the recommended practices are, and how to enhance
existing applications to better suit a cloud-enabled world.

Chapter 10, Implementing User Interaction, is where we will detail the omnichannel
approach by having a look at the different entry points for customer interaction.

Chapter 11, Dealing with Data, is where we will have a look at the different kinds of data

persistence and how and when to mix them together.

Chapter 12, Cross-Cutting Concerns, is where we will summarize the most important
cross-cutting topics to be taken into account, including identity management, security,
and resilience.

Chapter 13, Exploring Software Life Cycle, will discuss all the ancillary concepts of software
development projects, such as source code management, testing, and releasing. This will

include some interesting concepts, such as Continuous Integration and Continuous
Delivery/Deployment (also known as CI/CD).

Chapter 14, Monitoring and Tracing Techniques, will explore concepts related to the
visibility and maintenance of applications running in production. This includes things
such as log management, metric collection, and application performance management.

Chapter 15, What's New in Java?, will focus on the latest Java release (17) as well as a
bit of the history of the language (including versioning schemes) and the ecosystem of
Java vendors.

To get the most out of this book

The code samples provided with this book are generic enough to be run with the most
recent Java versions, provided by any vendor. All the most common operating systems
(Windows, macOS, and Linux) will work. The build and dependency management tool
used is Maven.

xx Preface

The suggested configuration is Java OpenJDK 11 and Apache Maven 3.6. For the React
examples, Node.js 8.1 and React 17 were used.

Software/hardware covered in the book Operating system requirements
Maven 3.6 Windows, macOS, or Linux
Java Open]DK 11 Windows, macOS, or Linux
Node.js 8.1 Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Hands-On-Software-Architecture-
with-Java. If there's an update to the code, it will be updated in the GitHub repository.

We have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800207301 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Each test method is identified by the @Test annotation."

Preface xxi

A block of code is set as follows:

@Test

public void testConstructor ()

{

Assertions.assertEquals (this.hello.getWho(),
"default") ;

Any command-line input or output is written as follows:
mvn io.quarkus:quarkus-maven plugin:1.12.2.Final :create

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "The
following diagram shows you a comparison of Iaa$, Paa$, and SaaS."

Tips or Important Notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub . comand mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub.com/support/errata and fill in

the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

xxii Preface

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts

Once you've read Hands-On Software Architecture with Java, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

Iszzued to Hichelle Siebert - {nziebert@netline.conl

Section 1:
Fundamentals
of Software
Architectures

In this section, you will gain all the foundations needed for defining and understanding
complex software architectures.

We will start with what software architecture is, the different kinds of it, and the
importance of properly defining it. We will then step into the first phases of a software
development project, including requirement collection and architecture design.

The focus will then be on best practices for software design and development. Last but
not least, we will have an overview of the most common development models, such as
waterfall, Agile, and DevOps.

This section comprises the following chapters:

o Chapter 1, Designing Software Architectures in Java - Methods and Styles
o Chapter 2, Software Requirements — Collecting, Documenting, Managing
o Chapter 3, Common Architecture Design Techniques

o Chapter 4, Best Practices for Design and Development

o Chapter 5, Exploring the Most Common Development Models

64157 367EF198

1

Designing Software
Architectures in
Java - Methods
and Styles

In this chapter, we will focus on some core concepts that we can use as a base to build

on in the upcoming chapters. We will explore different ways to represent the software
architecture, paying attention to the intended audience and their specific point of view.
Additionally, we will elaborate on the importance of a proper architectural design and its
role in the software development life cycle. Following this, we will move on to the Java
ecosystem, which is the core topic of this book, to discover why it’s a good choice for
implementing a complete enterprise application.

In particular, we will cover the following topics:

 The importance of software architecture

« Different types of architecture design — from doodling on paper to more
accurate modeling

4 Designing Software Architectures in Java - Methods and Styles

o Other kinds of architectural diagrams
« The changing role of Java in cloud-native applications
+ Case studies and examples

« Software components diagram

By the end of this chapter, you should have a clear view of why design is a critical part
of the software development process and what the main types of architecture schemas
are. Additionally, you will become familiar with the role of Java technology in modern
application development.

These skills are crucial for implementing functional and elegant software solutions. It will
also be a good basis for personal development and career enhancement.

The importance of software architecture

Often, software development is all about cost and time. No one knows exactly why, but the
software industry is almost always associated with tight deadlines, insufficient resources,
and long hours. Under this kind of pressure, it's common to question the importance

of everything that is not strictly coding. Testing is a common victim of this, along with
documentation and, of course, design. But of course, these phases are essential for the
success of a project. While we will quickly touch on most of those aspects, architecture
design is the core of this book, and I believe that by understanding the practices and goals,
the need for it will become clear to everybody.

In this section, we will discover what the fundamental objects of a properly designed
architecture are. Highlighting those simple but crucial points is useful in raising awareness
about the importance of this phase. If you start advocating those good practices in your
team, the quality of your software deliverables will increase.

The objectives of architecture design in the software
life cycle

The ultimate goal of this book is not to define the architecture per se; there are plenty of
papers and interesting things available on that matter, including the awesome work of
Martin Fowler. Nevertheless, there are a couple of considerations that we need to bear
in mind.

The importance of software architecture 5

The architecture should support the crucial decisions within our software project.
However, the architecture itself is actually a loose concept, often including different plans
(such as physical, logical, network, and more) and points of view (such as users, business
logic, machine-to-machine interactions, and more).

Let’s take the most overused metaphor as an example: a software project is like a building.
And similarly to a construction project, we require many different points of view, with
different levels of detail, ranging from general overviews to detailed calculations and

the bills of materials. A general overview is useful to give us an idea of where we are and
where we want to go. In addition to this, it is an essential tool for being sure we are on
the right path. However, a system overview doesn’t provide enough details for teams

such as networking, security, sysops, and, ultimately, the developers that require a more
substantiated and quantitative view to drive their day-to-day decisions.

The main goals of designing a proper software architecture include the following:

« Prospecting a birds-eye view to project sponsors and investors. While it is not a
good practice to drive a business discussion (for example, an elevator pitch) toward
technical elements too soon, a higher level of management, venture capitalists, and
the like are becoming increasingly curious about technical details, so a high-level
overview of the application components can be crucial for winning this kind of
discussion.

+ Defining a shared lingo for components of our solution, which is crucial for
collaborating across the team.

 Providing guidance for technological choices since putting our design decisions
on paper will clarify important traits of our application. Will data be central? Do
we need to focus on multiple geographies? Are user interactions the most common use
case? Some of those reasonings will change over time. However, correctly designing
our application will drive some crucial technology choices, in terms of choosing
components and stacks to rely on.

« Splitting roles and responsibilities. While a proper project plan, a statement of
work, or a Responsible, Accountable, Consulted, Informed (RACI) (which is
a classical way to categorize who does what) table will be used for real project
management, writing the software backbone down on paper is our first look at who
we have to involve for proper project execution.

Indeed, the architecture is an excellent example of planning in advance. However, a proper
software architecture should be much more than a technological datasheet.

6 Designing Software Architectures in Java - Methods and Styles

Architecture, as with buildings, is more about the styles and guidelines to be followed
all around the project. The final goal of a piece of software architecture is to find elegant
solutions to the problems that will arise during the project plan. Ultimately, it will act as
guidance throughout the project’s life cycle.

The software architect - role and skills

As a role, the software architect is often identified as the more senior technical resource

in the IT team. In fact, the job role of an architect is almost always seen as a career
progression for developers, especially in enterprise environments. While not necessary,
being good at coding is crucial for a complete comprehension of the overall functioning of
the system.

There are several different other skills that are required to be a successful architect,
including creativity, the ability to synthesize, and vision. However, above all, experience is
what it takes to become an architect.

This includes firsthand experience on many different projects, solving real-world issues:
what a proper software design looks like and how the design has evolved. This skillset is
very useful to have in the background of the architect.

Additionally, it’s vital to have a huge library of solutions to choose from in order to avoid
reinventing the wheel. While we love to think that our problem is very unique, it’s very
unlikely to be so.

This leads us to the approach that we will use in this book: we will not focus on just one
aspect or technology to drill down on, but we will take a horizontal approach, discussing a
number of different topics and offering ideas on how to approach potential problems. We
hope to act as a handbook to support you when making real-world choices.

Is architecture design still relevant in modern
development?

There will be a couple of chapters dedicated to discussing Microservices, DevOps, and
the cloud-native avalanche, but it’s safe to assume that in one form or another, you will
have plenty of opportunities to hear something about them.

As you might have gathered, most of these concepts are not really new. The Agile
Manifesto, which is a seminal work detailing some of the practices commonly used

in modern development techniques, was published in 2001, yet most of the common-
sense principles it contains are misinterpreted. When I was working in IT consulting
back in 2008, a common joke among development teams was "Yes, we do agile. We skip
documentation and testing."

Different types of architecture design - from doodling on paper to more accurate modeling 7

Of course, that’s just an opinion based on personal experience. There are plenty of teams
who do not underestimate the importance of proper planning and documentation and

are doing wonderfully while working with Agile. Yet, in some cases, less structured
development methodologies have been taken as an excuse to skip some crucial steps of the
development life cycle.

As we will elaborate, in Chapter 5, Exploring the Most Common Development Models,
Agile is much more than slimming down boring phases of the project. Indeed, testing and
documentation are still very relevant, and Agile is no excuse to skip that.

There are plenty of reflections you can take in terms of how to adapt your design
techniques to DevOps, Agile, and more, and we will discuss this topic later in this book.
However, one thing is certain: architecture matters. Design is very relevant. We have to
spend the correct amount of time planning our choices, revisiting them when needed,
and generally, sticking with some well-defined guiding principles. The alternative is poor
quality deliverables or no deliverables at all.

Now, let’s take a look at what the first phases of software design usually look like.

Different types of architecture design - from
doodling on paper to more accurate modeling

When we start to shape the architecture of a new application, the result is often familiar.

I would say that across different geographies, industries, and application types, some
elements are common. The architectural sketches are usually made of boxes and lines,
with labels, arrows, and similar artifacts. That’s an intuitive way to shape our thoughts
on paper.

However, in the following section, we will go through different ways of expressing those
concepts. This will make us aware of available styles and techniques and will make our
diagram clearer and, ultimately, easier to share and understand.

But first, let’s find out what the characteristics of architectural sketching actually are.

8 Designing Software Architectures in Java - Methods and Styles

Sketching the main architectural components

As we discussed earlier, there are a number of different components that are recurrent in a
high-level architectural sketch. Let’s examine them one by one:

Boxes: These represent the software components. They can refer to one complete
application or specific subcomponents (such as packages, modules, or similar things).

Lines: These describe the relationships between the boxes. Those links imply some
sort of communication, commonly in the form of APIs. The lines can also represent
inheritance or a grouping of some sort. A direction (that is, an arrow) can also

be specified.

Layers: These are a dotted or dashed line, grouping components and their
relationships. They are used to identify logical slices of the architecture (such as
the frontend, backend, and more), the grouping of subcomponents (for example,
validation and business logic), network segments (such as the intranet and DMZ),
physical data centers, and more.

Actors: Simulating the interactions of users within the systems, actors are usually
represented as stickmen, sitting on top of some components (usually frontends or
UIs of some sort). It is not uncommon to observe different channels represented,
in the form of laptops or mobile phones, depending on the industry and type of
application (for example, ATMs, branch offices, and physical industrial plants).

Now, let’s view an example sketch:

Layer A

Software Software
Component 1 > Component 2

Actor1

Software
Component 3

Database

Figure 1.1 - The common components on a first architectural sketch

Other kinds of architectural diagrams 9

As we've already mentioned, the quick and dirty representation shown in this diagram
is useful since it’s an easy way to start thinking about how our application should look.
However, on a closer look, there are some common inaccuracies:

o The software components (that is, our boxes) might be represented with different
levels of zoom: sometimes representing applications, sometimes features, and
sometimes software modules. This is inconsistent and could generate confusion.

« Some components are specialized (for example, databases), while others are not. As
noted in the preceding point, this leads to an inhomogeneous view.

+ Insome parts of the diagram, we are representing use cases or information flows
(for example, with the actors), while elsewhere, we are drawing a static picture of
the components.

+ Some points of view don’t cope well with others because we might be representing
network firewalls but not referencing any other networking setup.

Now that we’ve learned what a naive representation looks like and what its limits are,
let’s take a look at some other types of diagrams and how they represent alternative points
of view.

Other kinds of architectural diagrams

As we discovered in the previous section, the first sketches of a piece of architecture often
end up as an intuitive and naive view, lacking essential details. In this section, we will look
at an overview of different types of architectural diagrams. This will help us to pick the
right diagram for the right situation, defining a clearer view of our architecture. So, let’s
dig into some details.

10 Designing Software Architectures in Java - Methods and Styles

Common types of architectural diagrams

In order to define a clearer and more detailed view of what our software will look like, it’s
essential to start picking layers and points of view to represent. This will naturally lead
us to focus on more tailored designs. While not exhaustive, a list of possible architectural

diagrams includes the following:

o Software components: This kind of schema includes different software modules
(such as applications or other components) and the interaction between them (for
example, read from, write to, listen, and more). One particular instance of this
diagram could include protocols and formats of communication between those

components, becoming close to a complete API documentation:

Rest AP|

CRM

Mobile
Application

Rest API

API Server

Rest API

SOAP

Backend

JDBC

Database

JCA

Legacy

Figure 1.2 - Software components diagram

Other kinds of architectural diagrams 11

« Network architecture: This is a pretty common design type and is often considered
the more scientific and detailed one. It includes data such as network segments
(DMZ and INTRANET), Firewall, IP addressing, and more:

CRM

over
Internet

Mobile
Application

s 7 '
https://www.example.com]

1

Ib1.example.com |

Balancer Ib2.example.com |

I 1

API Server api.example.com |

I

DMZ I

_F==== I — _=======|
| |
| |
|

Backend Legacy 1

| I
1 be[1.5].example.com 10.10.xxX.yyy 1
| |
| |
| I
| Database 10.10.x00yyy |
| INTRANET |

o o oo o o o o o o o o o e o e o o o)

Figure 1.3 — Network architecture diagram

12 Designing Software Architectures in Java - Methods and Styles

« Physical architecture: This is a mapping of software modules into server
deployments. Usually, it's complete with information about the server hardware
and model. In the case of a multiple datacenter setup (which is pretty common in
enterprise environments), it can also contain details about racks and rooms. Storage
is another relatively common component. Depending on the implementation, this
architecture might include information about virtualization technology (for example,
the mapping of VMS to the physical servers that are hosting it). Additionally, it could,
where relevant, include references to cloud or container deployments:

Global Load balancers |

:IFW1IILB1||FW2]IL82|

I (. I
I 1 | |
I (. I
I [API server1 | [APiserver2 | Pl | API server3 | [API servera | |
| | BE 1 [|l BE3 @R | P IBE10oRr) || || BE3 | :
1 |[BE2 || || BE4(oR) | ;| |BE2@or) || |[BE4 | I
1 ||DB1 || |l DB2@R) | Pl IDB1pRr) || || DB2 | I
M| [|l ¢ 1|l | | |
N | | B | | L | | || |l
I Rack xxxx Rack yyyyy I | Rack xxxx Rack yyyyy |
I (- I
I (. [
| (. I
. oc 1l . pc 2!
S NN [|

Figure 1.4 - Physical architecture diagram

These are the very basic points of view in an architecture diagram and an essential starting
point when detailing the design of your application. Diving further into the application
specification life, other kinds of diagrams, often derivatives of those, could be elaborated
(for example, cloud deployment diagrams, software modules, and more) depending on
your specific needs. In the next section, we will focus on Java technology, which is the
other fundamental topic of this book and crucial for completing our architectural view of
modern applications.

The changing role of Java in cloud-native applications 13

The changing role of Java in cloud-native
applications

Now that we've briefly touched on the various kinds of designs and diagrams of an
application, let’s focus on the other fundamental topic of this book: the Java language.

It’s not uncommon to hear that Java is dead. However, if you are reading this book, you
probably agree that this is far from the truth.

Of course, the panorama of software development languages for enterprise applications is
now wider and more complicated than the golden age of Java; nevertheless, the language is
still alive and widespread, especially in some areas.

In this section, we will explore the usage of Java technology in the enterprise software
landscape. Then, we will take a quick glance at the history of Java Enterprise Edition
(JEE). This will be a good foundation to understand existing enterprise architectures and
model modern, cloud-native applications based on this technology.

Now, let’s examine why Java technology is still thriving.

Why Java technology is still relevant today

The most important reason for Java’s popularity is probably the availability of skill. There
are plenty of experts on this language, as many polls and studies show (for example,
PYPL and Tiobe). Another crucial point is the relevance of the ecosystem, in terms of the
quantity and quality of libraries, resources, and tooling available for the Java platform.

Rewriting complex applications (including their dependencies) from Java to another
language could probably take years, and, long story short, there might be no reason to
do that. Java just works, and it’s an incredibly productive platform. It might be slow and
resource-intensive in some scenarios, but this is balanced by its stability. The language
has been battle-tested, is feature-rich, and essentially, covers all the use cases required
in an enterprise, such as transactionality, integration with legacy environments,

and manageability.

Now, let’s take a look at where and how Java technology is used in enterprise
environments. This can be very useful to understand existing scenarios and fit new
applications into existing application landscapes.

14 Designing Software Architectures in Java - Methods and Styles

Java usage in enterprise environments

In order to fit our Java application in the overall architecture, it’s important to understand
the typical context of a large enterprise, from a software architecture perspective.

Of course, the enterprise architecture depends a lot on the industry domain (for instance,
banking, telecommunications, media, and more), geography, and the tenure of the
organization, so my vision might be slightly biased toward the segment I have worked
with for the longest (a large enterprise in the EMEA area). Still, I think we can summarize
it as follows:

 Legacy: Big applications, usually running very core functions of the enterprise for
many years (at least more than 10 and commonly more than 20). Needless to say,
the technology here is not the most current (Cobol is widespread in this area, but it
is not uncommon to see other things such as PL SQL, huge batch scripts, and even
C/C++ code). However, the language is seldom an issue here. Of course, nowadays,
those skills are very rare to find on the job market, but usually, the software just
works. The point here is that most of the time, nobody exactly knows what the
software does, as it’s poorly documented and tested. Moreover, you usually don't
have automated release procedures, so every time you perform a bugfix, you have
to cross your fingers. Needless to say, a proper testing environment has never been
utilized, so most of the things have to be tested in production.

« Web (and mobile): This is another big chunk of the enterprise architecture. Usually,
it is easier to govern than legacy but still very critical. Indeed, by design, these
applications are heavily customer-facing, so you can’t afford downtime or critical
bugs. In terms of technologies, the situation here is more fragmented. Newer
deployments are almost exclusively made of Single-Page Applications (SPAs)
based on JavaScript (implemented with frameworks such as Angular, Vue, and
React). Backends are REST services implemented in JavaScript (Node.js) or Java.

 Business applications: Often, the gap between web applications and business
applications is very thin. Here, the rule of thumb is that business applications
are less web-centric (even if they often have a web GUI), and usually, they are
not customer exposed. The most common kind of business application is the
management of internal back-office processes. It’s hard to find a recurrent pattern
in business applications since it’s an area that contains very different things (such as
CRMs, HR applications, branch office management, and more).

The changing role of Java in cloud-native applications 15

« BigData: Under various names and nuances (such as data warehouses, data lakes,
and Al), BigData is commonly a very huge workload in terms of the resources
required. Here, the technologies are often packaged software, while custom
development is done using various languages, depending on the core engine
chosen. The most common languages in this area are Java (Scala), R (which is
decreasing in popularity), and Python (which is increasing in popularity). In some
implementations, a big chunk of SQL is used to stitch calculations together.

» Middlewares and infrastructure: Here falls everything that glues the other apps
together. The most common pattern here is the integration (synchronous or
asynchronous). The keywords are ESB, SOA, and messaging. Other things such as
Single Sign-On and identity providers can be included here.

As I mentioned, this is just a coarse-grained classification, useful as reference points
regarding where our application will fit and which other actor our application will be
interacting with.

Notice that the technologies mentioned are mostly traditional ones. With the emergence
of modern paradigms (such as the cloud, microservices, and serverless), new languages
and stacks are quickly gaining their place. Notable examples are Go in the microservice
development area and Rust for system programming.

However, those technologies and approaches are often just evolutions (or brand-new
applications) belonging to the same categories. Here, the most interesting exception

is in the middleware area, where some approaches are decreasing in popularity (for
example, SOA) in favor of lighter alternatives. We will discuss this in Chapter 7, Exploring
Middleware and Frameworks.

Now that we've explored the widespread usage of Java in an enterprise context, let’s take a
look at its recent history.

JEE evolution and criticism

JEE, as we have learned, is still central in common enterprise applications. The heritage of
this language is just great. The effort that has been done in terms of standardizing a set of
APIs for common features (such as transactionality, web services, and persistence) is just
amazing, and the cooperation between different vendors, to provide interoperability and
reference implementation, has been a very successful one.

16 Designing Software Architectures in Java - Methods and Styles

However, in the last couple of years, a different set of needs has emerged. The issue with
JEE is that in order to preserve long-term stability and cross-vendor compatibility, the
evolution of the technology is not very quick. With the emergence of cloud and more
modular applications, features such as observability, modular packaging, and access to no
SQL databases have become essential for modern applications. Of course, standards and
committees have also had their moments, with developers starting to move away from
vanilla implementations and using third-party libraries and non-standard approaches.

Important Note:

The objective of this book is not to recap the history and controversy of the JEE
platform. However, organizational issues (culminating with the donation of the
project to the Eclipse Foundation) and less frequent releases have contributed
to the decrease in popularity of the platform.

The upcoming of the Platform-as-a-Service (Paa$S) paradigm is another important event
that is changing the landscape. Modern orchestration platforms (with Kubernetes as the
most famous example), both in the cloud or on-premises, are moving toward a different
approach. We will examine this in greater detail later, but essentially, the core concept is
that for the sake of scalability and control, some of the typical features of the application
server (for example, clustering and the service registry) are delegated to the platform itself.
This has a strict liaison with the microservice approach and the benefits they bring. In the
JEE world, this means that those features become duplicated.

Another point is about containerization. One of the focal points of container technology

is immutability and its impacts in terms of stability and the quality of the applications. You
package one application into a container and easily move it between different environments.
Of course, this is, not in the same direction as JEE servers, which have been engineered to
host multiple applications, managing hot deploys and live changes of configurations.

A further consideration regarding application servers is that they are, by design, optimized
for transaction throughput (often at the expense of startup times), and their runtime is
general-purpose (including libraries covering many different use cases). Conversely, the
cloud-native approach is usually aimed at a faster startup time and a runtime that is as
small as possible, bringing only the features needed by that particular application. This
will be the focus of our next section.

The changing role of Java in cloud-native applications 17

Introducing cloud-native Java

Since the inception of the microservices concept, in the Java development community,
the paradigm has increasingly shifted toward the fat jar approach. This concept is nothing
new, as the first examples of uber jars (a synonym of the fat jar) have been around since
the early 2000s, mainly in the desktop development area. The idea around them is pretty
simple: instead of using dynamic loading of libraries at runtime, let’s package them all
together into an executable jar to simplify the distribution of our application. This is
actually the opposite of the model of the application servers, which aim to create an
environment as configurable as possible, supporting things such as hot deployment and
the hot-swapping of libraries, privileging the uptime to immutability (and predictability).

In container-based and cloud-native applications, fat jar approaches have begun to be
viewed as the perfect candidate for the implementation of cloud-native, microservices-
oriented applications. This is for many different reasons:

« Testability: You can easily run and test the application in a local environment (it’s
enough to have a compatible Java Virtual Machine or JVM). Moreover, if the
interface is properly defined and documented, it’s easy to mock other components
and simulate integration testing.

 Ease of installation: The handover of the application to ops groups (or to testers) is
pretty easy. Usually, it’s enough to have the . jar file and configuration (normally,
on a text file or environment variable).

« Stability across environments: Since everything is self-contained, it’s easy to avoid
the works-on-my-machine effect. The development execution environment (usually,
the developer machine) is designed pretty similarly to the production environment
(aside from the configuration, which is usually well separated from the code, and of
course, the external systems such as the databases). This behavior mirrors what is
provided by containers, and it’s probably one of the most important reasons for the
adoption of this approach in the development of microservices.

There is one last important consideration to pay attention to: curiously enough, the all-in-
one fat jar approach, in contrast with what I've just said, is theoretically conflicting with
the optimization provided by the containerization.

18 Designing Software Architectures in Java - Methods and Styles

Indeed, one of the benefits provided by every container technology is layerization. Put
simply, every container is composed by starting with a base image and just adding what’s
needed. A pretty common scenario in the Java world is to create the application as a tower
composed of the operating system plus the JVM plus dependencies plus the application
artifact. Let’s take a glance at what this looks like in the following diagram. In gray, you
will see the base image, which doesn’t change with a new release of the application.
Indeed, a change to the application artifact means only redeploying the last layer on top of
the underlying Base Image:

Application Artifact Application Artifact V2

Application Dependencies Application Dependencies

Java Virtual Machine Java Virtual Machine

Base Image
Base Image

Operating System Operating System

Figure 1.5 — Layering container images

As you can see in the preceding diagram, the release in this scenario is as light as simply
replacing the Application Artifact layer (that is, the top layer).

By using the fat jar approach, you cannot implement this behavior. If you change
something in your application but nothing in the dependencies, you have to rebuild the
whole Fat JAR and put it on top of the JVM layer. You can observe what this look like in
the following diagram:

e Application Artifact e Application Artifact V2
< <

- -

© o . ®© _ .
Ll Application Dependencies LL Application Dependencies
o Q

% Java Virtual Machine % Java Virtual Machine
£ £

)])]

e Operating System o Operating System
om om

Figure 1.6 — Layering container images and fat jars

The changing role of Java in cloud-native applications 19

In this scenario, the release includes all of the application dependencies, other than the
application by itself.

While this might appear to be a trivial issue, it could mean hundreds of megabytes copied
back and forth into your environment, impacting the development and release time since
most of the things composing the container cannot be cached by the container runtime.

Some ecosystems do a bit of experimentation in the field of hollow jars to essentially replicate
an approach similar to the application server. Here, the composed (fat) jar is split between
the application layer and the dependencies layer in order to avoid having to repackage/move
everything each time. However, this approach is far from being widespread.

The Java microservices ecosystem

One last consideration goes to the ecosystem in the Java microservices world. As we were

beginning to mention earlier, the approach here is to delegate more things to the platform.
The service itself becomes simpler, having only the dependency that is required (to reduce
the size and the resource footprint) and focusing only on the business logic.

However, some of the features delegated to the application server are still required. The
service registry, clustering, and configuration are the simplest examples that come to mind.

Additionally, other, newer needs start to emerge:

« HealthCheck is the first need. Since there is no application server to ensure your
application is up and running, and the application is implemented as more than one
running artifact, you will end up having to monitor every single microservice and
possibly restarting it (or doing something different) if it becomes unhealthy.

« Visibility is another need. I might want to visualize the network of connections and
dependencies, the traffic flowing between components, and more.

« Last but not least: resiliency. This is often translated as the circuit breaker even if
it’s not the only pattern to help with that. If something in the chain of calls fails, you
don’t want the failure to cascade.

So, as we will discover in the upcoming chapters, a new ecosystem will be needed to
survive outside the JEE world.

Microservices has been a groundbreaking innovation in the world of software
architectures, and it has started a whole new trend in the world of so-called cloud-native
architectures (which is the main topic of this book). With this in mind, I cannot avoid
mentioning another very promising paradigm: Serverless.

20 Designing Software Architectures in Java - Methods and Styles

Serverless borrows some concepts from microservices, such as standardization and
horizontal scaling, and takes it to the extreme, by relieving the developer of any
responsibility outside the code itself and delegating aspects such as packaging and
deployment to an underlying platform. Serverless, as a trend, has become popular as
a proprietary technology on cloud platforms, but it is increasingly used in hybrid
cloud scenarios.

Java is not famous in the serverless world. The need for compilation and the weight
added by the JVM has, traditionally, been seen as a showstopper in the serverless world.
However, as we will explore further in Chapter 9, Designing Cloud-Native Architectures,
Java technology is now also gaining some momentum in that area.

And now, in order to better clarify different architectural designs, we will examine some
examples based on a reference case study.

Case studies and examples

Following up on the handbook approach, each time we face a complex concept, I will try
to clarify it by providing case studies. Of course, while the cases are not real (for reasons
you can imagine), the challenges closely resemble several first-hand experiences I've
incurred in my professional history.

In this section, we will start from scratch by designing a piece of software architecture.
Then, we will add details to portray a more precise view. This will help you to better
understand the first steps in the design of a complex piece of architecture.

Case study - mobile payments

In this case study, we will simulate the architecture design of a mobile payment solution.
As contextual background, let’s suppose that a huge bank, in order to increase the service
offering toward their customers and following some market research, wants to implement
a mobile payment application. By definition, a mobile payment is a pretty broad term,
and it includes many different use cases involving financial transactions completed

using smartphones.

In this particular implementation, we will consider the use case of paying with your
smartphone by charging you via your mobile phone bill.

Essentially, this means implementing a client-server architecture (with the clients
implemented as a mobile application), interacting both with existing enterprise
applications and external systems exposed by telecommunication operators. Now, let’s
now try to analyze some use cases related to this scenario and model it by using the
different schemas we've discussed so far.

Case studies and examples 21

Whiteboarding the overall architecture

Beginning on white space, let’s start whiteboarding the overall architecture. As we've
learned, the first step is usually to sketch, at a high level, the relevant modules and the
relationships between them. It’s not important to be super detailed, nor to use a particular
style. We are just brainstorming the first shapes on paper:

ADMIN
e e) |
X]
[} .
D CDN J« CMS Session : PI_-h:\S_E_z_
! +Cachel | T '
] . 1
. ! 1 1
Mobile ! ¥ !
"
App User | : :
| . |Business] _ SQL, k— 1 |Report] !
1 | mBAAS " Logic »—T—>s owH|’
1 e b 1
] : | '
[}
1 . ! '

Database
NEW .S_AMl:l; _____ s _OAEJ; ________________ :
:_ — - —Y R -ES ---------- 1:
] Transactional .
AUTH
: Backend m '
1

Figure 1.7 — Architecture whiteboarding

Here, we have drafted a birds-eye view of the use case. We now know where the
transaction starts, where the data is saved, and how the user interacts with the system.

Additionally, we have identified the main components of the application:

« The mobile application (represented together with the user)
o The (CDN) to serve static resources to the application
+ The (CMS) to configure content to be delivered to the app

« The backend (mobile Backend as a Service or mBaaS$) to proxy requests
and responses

o The business logic of the application

« Session and Cache, to store non-persistent data of the users

22 Designing Software Architectures in Java - Methods and Styles

« Database, to store persistent data

o Other parts of the application: reporting and data warehousing, authentication,
Transactional Backend, and Customer Relationship Management (CRM)

As expected, this kind of design has some intrinsic issues:

« You can observe mixed-use cases (both of the mobile user and the CMS
administrator), which can be foreseen by the arrows between different components,
but it’s barely designed.

« There is a view in the project timeline regarding the implementation of
components (reporting and data warehousing appear to be optional in the first
phase of the project).

Some protocols in the interactions are named (for example, SOAP and REST), but it’s not
an API specification, nor a network schema. Anyway, even if it’s not super detailed, this
schema is a good starting point. It helps us to define the main application boundaries, it
gives a high-level overview of the integration points, and overall, it’s a good way to kick off
a more detailed analysis. We will improve on this in the next section.

Software components diagram

In order to address some of the issues highlighted in the previous section, I've modeled
the same system by focusing on software components. This does not follow any specific
standard even if is pretty similar to the C4 approach (where C4 stands for Context,
Containers, Components, and Code; we will discuss this further in later chapters):

Software components diagram 23

ayment System

User
Participant in the
payment system

Access profile info, |
transaction history and
make new payment transactions |

Make API calls and Content
send files Management System

Implements lifecycle

Mobile Application
Provide the mobile
payment
functionalities

for mobile application
resources

i Make API calls
Authentication Mobile Backend
and Authorization Provide access to
Provide identity and Sl M business logic, by
authorization exposing mobile
services optimized API

Make API calls

| Make API calls

Caching and Reporting and
Sessions Datawarehouse

Store volatile e Provide
fl information related calculations over
to the business logic transaction data

Transactional
Backend
Provide
transactions and
balance services

Read and write to

Business Logic
nt the

Make API calls :-- ogic
Customer workflows of the

Relationshp payment use cases
Management

Database

Read and write to [EEICICREIEECH
informations related to

Provide and receive
customer profile
information

the business logic

Figure 1.8 - Software components diagram

As you can see, this schema is more homogeneous and better organized than the first
sketch. At a first glance, you can view what features are provided to the user. Additionally,
it highlights how the system interacts with each other in a structured way (for example,
using API calls, reads and writes, and more).

24 Designing Software Architectures in Java - Methods and Styles

Compared to the first sketch, there are some considerations that we can observe:

o The components are almost the same as the other schema.

o The diagram is less focused on the use case, even if the user is still represented
(together with a high-level recap of the features available to them).

« There is no view on the project phases. This helps you to focus on just one point
of view (architectural components), making the schema less confusing.

 No protocols are named, only high-level interactions (such as reads, writes, and
API calls).

o Some technical components are preserved (the database), while others are skipped
since they have less impact on the functional view (for example, the CDN, which is
probably more relevant on a network schema).

In this section, we learned how to approach the first design of our mobile payments
application; first, with a more naive view, then by trying to detail the view in a more
structured way. In the upcoming chapters, we will discuss how to further clarify and
enrich those views.

Summary

In this first chapter, we just scratched the surface on the two most essential topics of this
book: the different types of architectural design and the relevance of Java technology in
the enterprise world.

We have discovered what the first sketches of our software architecture look like and

why they are relevant, even if they are not very detailed. Then, we moved on to different
schemas (such as software components, the infrastructure, and the network) to get a
glimpse of other schema styles, which is useful to address specific areas of interest. On the
Java side, we made some considerations about the role of Java in the enterprise landscape
and how the language is evolving to meet the challenges of modern cloud environments.

These concepts will be useful starting points for the two core concepts of this book. On

the architectural side, we've grasped how complex and important it is to view, analyze, and
design a proper architecture. From a technological point of view, we've learned how Java,
the technology we will focus on for the rest of this book, is very widespread in the enterprise
context and how it is still relevant for building modern, cloud-native applications.

In the next chapter, we will start working with requirements. Requirement gathering
and specifications are essential in order to rework our architectural design, adding more
details and ensuring the final product will meet customer expectations.

Further reading 25

Further reading

Who Needs an Architect? by Martin Fowler (http://files.catwell.info/

misc/mirror/2003-martin-fowler-who-needs-an-architect.pdf)

Don’t Put Fat Jars in Docker Images by Philipp Hauer (https://phauer.
com/2019/no-fat-jar-in-docker-image)

64157 367EF198

2

Software
Requirements
- Collecting,
Documenting,
Managing

Collecting requirements is arguably one of the most frustrating activities in software
production for several reasons. Difficulties often arise because it is never completely clear
who the owner is, as well as because architects cannot do a good design without certain
requisites, and developers, of course, can't do a proper job without the designs.

28 Software Requirements — Collecting, Documenting, Managing

However, it is fairly common practice for a development team to start doing something
without a complete requirements collection job because there is no time. Indeed, what
often happens, especially in regards to large and complex projects, is that the milestones
are put in place before the project scope is completely defined. In this industry, since
software is an intangible product (not like a building or a bridge), budget approval is
usually a more fluid process. Therefore, it's not unusual to have a project approved before
all the details (including requirements, feasibility, and architectural design) are fully
defined. Needless to say, this is an inherently bad practice.

In this chapter, we will look at different techniques for requirements gathering and
analysis in order to increase the quality of our software deliverables.

You will learn about the following:

o The different types of requirements: functional and non-functional
o What characteristics a requisite must have
« How to formalize requirements in standard formats

« How to collect requirements by using agile and interactive techniques

Once you have completed this chapter, you will be able to organize productive
requirements gathering sessions and document them in a clear way. Being able to collect
and properly document requisites can be a real gamechanger for your career in software
development in several ways:

o The quality of the software you produce will be better, as you will focus on what's
really needed and be able to prioritize well.

« You will have a better understanding of the language of business and the needs of
your customers, and you will therefore implement features that better fit their needs.

 You will have the possibility to run informal and interactive sessions on
requirements gathering. (As an example, see the Event Storming section.)

« You will have a primer about international standards in software requirements
specifications, which may be a hard constraint in some environments (for example,
when working for regulated industries such as government or healthcare).

Since requirements collection and management is a practice mostly unrelated to a specific
programming language, this chapter doesn't directly reference Java technology.

Now, let's start exploring the discipline of software requirements engineering.

Introducing requirements engineering 29

Introducing requirements engineering

From a purely metaphorical perspective, if an algorithm is similar to a food recipe, a
software requirement is the order we place at a restaurant. But the similarity probably
ends here. When we order our food, we pick a specific dish from a discrete list of options,
possibly with some small amount of fine tuning.

Also, continuing with our example, the software requirement has a longer and more
complex life cycle (think about the testing and evolution of the requirement itself), while
the food order is very well timeboxed: the customer places the order and receives the food.
In the worst case, the customer will dislike the food received (like a user acceptance test
going wrong), but it's unusual to evolve or change the order. Otherwise, everything is okay
when the customer is happy and the cook has done a great job (at least for that particular
customer). Once again, unlike the software requirement life cycle, you will likely end up
with bug fixes, enhancements, and so forth.

Requirements for software projects are complex and can be difficult to identify and
communicate. Software requirements engineering is an unusual job. It requires a
concerted effort by the customer, the architect, the product manager, and sometimes other
various professionals. But what does a technical requirement actually look like?

Feature, Advantage, and Benefit

As we will see in a few sections, requirements collection involves many different
professionals working together to shape what the finished product will look like. These
professionals usually fall into two groups, business-aware and technology-aware. You should
of course expect those two groups to have different visions and use different languages.

A good way to build common ground and facilitate understanding between these two
groups is to use the Feature, Advantage, and Benefit logical flow.

This popular framework, sometimes referred to as FAB, is a marketing and sales
methodology used to build messaging around a product. While it may not seem
immediately relevant in the requirements gathering phase, it is worth looking at.

30 Software Requirements — Collecting, Documenting, Managing

In the FAB framework, the following apply:

A Feature is an inherent product characteristic, strictly related to what the product
can do.

o The Advantage can be defined as what you achieve when using a particular Feature.
It is common to have more than one Advantage linked to the same technical feature.

« The Benefit is the final reason why you would want to use the Feature. If you want,
it's one further step of abstraction starting from advantages, and it is common to
have more than one Benefit linked to the same feature.

Let's see an example of FAB, related to the mobile payment example that we are carrying
over from the previous chapter:

+ A Feature is the possibility of authorizing payments with biometric authentication
(such as with your fingerprint or face ID). That's just the technical aspect, directly
related to the way the application is implemented.

o The related Advantage is that you don't need to insert a PIN or password (and
overall, you will need a simpler interaction with your device — possibly just one
touch). That's what the feature will enable, in terms of usage of the application.

o The linked Benefit is that your payments will be faster and easier. But another benefit
can be that your payments will also be safer (no one will steal your PIN or password).
That's basically the reason why you may want to use this particular feature.

As you can imagine, a non-technical person (for example, a salesperson or the final
customer) will probably think of each requirement in terms of benefits or advantages.
And that's the right way to do it. However, having reasoning on the FAB flow could help
in having a uniform point of view, and possibly repositioning desiderata into features and
eventually requirements. We can look at a simple example regarding user experience.

Sticking with our mobile payments sample application, a requirement that business people
may want to think about is the advantages that the usage of this solution will bring.

One simple example of a requirement could be to have a list of payments easily accessible
in the app. A feature linked to that example would allow the customers to see their
transaction list immediately after logging into the system.

In order to complete our flow, we should also think about the benefits, which in this case
could be described as the ability to keep your expenses under control. However, this could
also work the other way around. When reasoning with more tech-savvy stakeholders, it's
easier to focus on product features.

Introducing requirements engineering 31

You may come up with a feature such as a user currently not provisioned in the system
should be presented with a demo version of the application.

The advantage here is having an easy way to try the application's functionalities. The
benefit of this for customers is that they can try the application before signing up for an
account. The benefit for the business is that they have free advertising to potentially draw
in more customers.

You might now ask, so what am I looking for, when doing requirements gathering, that is,
searching for features? There are no simple answers here.

My personal experience says that a feature may be directly considered a requirement, or,
more often, be composed of more than one requirement. However, your mileage may vary
depending on the type of product and the kind of requirements expressed.

One final thing to note about the FAB reasoning is that it will help with clustering
requirements (by affinity to similar requirements or benefits), and with prioritizing them
(depending on which benefit is the most important).

Now we have a simple process to link the technical qualities of our product to business
impacts. However, we haven't yet defined exactly what a requirement is and what its
intrinsic characteristics are. Let's explore what a requirement looks like.

Features and technical requirements

As we saw in the previous section, requirements are usually strictly related to the features
of the system. Depending on who is posing the request, requirements can be specified
with varying amounts of technical detail. A requirement may be as low-level as the
definition of an API or other software interfaces, including arguments and quantitative
input validation/outcome. Here is an example of what a detailed, technically specified
requirement may look like:

When entering the account number (string, six characters), the system must return the
profile information. Result code as int (0 if operation is successful), name as string, and
surname as string [...]. In the case of account in an invalid format, the system must return
a result code identifying the reason of the fault, as per a mapping table to be defined.

Often requirements are less technical, identifying more behavioral aspects of the system. In
this case, drawing on the model we discussed in the previous section (Feature, Advantage,
and Benefit), we are talking about something such as a feature or the related advantage.

32 Software Requirements — Collecting, Documenting, Managing

An example here, for the same functionality as before, may look like this:
The user must have the possibility to access their profile, by entering the account number.

It's easy to understand that a non-technical requirement must be detailed in a quantitative
and objective way before being handed over to development teams. But what makes a
requirement quantitative and objective?

Types and characteristics of requirements

There are a number of characteristics that make a requirement effective, meaning easy to
understand and respondent to the customer expectations in a non-ambiguous way.

From my personal point of view, in order to be effective, a requirement must be
the following:

 Consistent: The requirement must not conflict with other requirements or existing
functionalities unless this is intentional. If it is intentional (for example, we are
removing old functionalities or fixing wrong behaviors), the new requirement must
explicitly override older requirements, and it's probably an attention point since
corner cases and conflicts are likely to happen.

« Implementable: This means, first of all, that the requirement should be feasible. If
our system requires a direct brain interface to be implemented, this of course will
not work (at least today). Implementable further means that the requirement must
be achievable in the right amount of time and at the right cost. If it needs 100 years
to be implemented, it's in theory feasible but probably impractical.

Moreover, these points need to be considered within the context of the current
project, since although it may be easy to implement something in one environment it
may not be feasible in another. For example, if we were a start-up, we could probably
launch a brand-new service on our app that would have little impact on the existing
userbase. If we were a big enterprise, however, with a large customer base and
consolidated access patterns, this may need to be evaluated more thoroughly.

« Explicit: There should be no room for interpretation in a software requirement.
Ambiguity is likely to happen when the requirement is defined in natural language,
given that a lot of unspoken data is taken erroneously for granted. For this reason, it
is advised to use tables, flowcharts, interface mockups, or whatever schema can help
clarify the natural language and avoid ambiguity. Also, straightforward wording,
using defined quantities, imperative verbs, and no metaphors, is strongly advised.

Introducing requirements engineering 33

« Testable: In the current development philosophies, heavily focused on
experimentation and trial and error (we will see more on this in the upcoming
chapters), a requirement must be translated in a software test case, even better if it
can be fully automated. While it may be expected that the customer doesn't have
any knowledge of software testing techniques, it must be possible to put testing
scenarios on paper, including things such as tables of the expected outputs over a
significant range of inputs.

The QA department may, at a later stage, complement this specification with a
wider range of cases, in order to test things such as input validation, expected
failures (for example, in the case of inputs too large or malformed), and error
handling. Security departments may dig into this too, by testing malicious inputs
(for example, SQL injections).

This very last point leads us to think about the technical consequences of a requirement.
As we were saying at the beginning of this chapter, requirements are commonly exposed
as business features of the system (with a technical standpoint that can vary in the level
of detail).

However, there are implicit requirements, which are not part of a specific business use case
but are essential for the system to work properly.

To dig deeper into this concept, we must categorize the requirements into three
fundamental types:

 Functional requirements: Describing the business features of the system, in terms
of expected behavior and use cases to be covered. These are the usual business
requirements impacting the use cases provided by the system to be implemented.

« Non-functional requirements: Usually not linked to any specific use case, these
requirements are necessary for the system to work properly. Non-functional
requirements are not usually expressed by the same users defining functional
requirements. Those are usually about implicit aspects of the application,
necessary to make things work. Examples of non-functional requirements include
performance, security, and portability.

+ Constraints: Implicit requirements are usually considered a must and are
mandatory. These include external factors and things that need to be taken for
granted, such as obeying laws and regulations and complying with standards (both
internal and external to the company).

34 Software Requirements — Collecting, Documenting, Managing

One example here could be the well-known General Data Protection Regulation
(GDPR), the EU law about data protection and privacy, which you have to comply
with if you operate in Europe. But you may also have to comply with the industry
standards depending on the particular market in which you are operating (that's
pretty common when working with banks and payments), or even standards
enforced by the company you are working with. A common example here is the
compatibility of the software (such as when it has to be compatible with a certain
version of an operating system or a particular browser).

Now that we've seen the different types of requirements and their characteristics, let's have
a look at the life cycle of software requirements.

The life cycle of a requirement

The specification of a requirement is usually not immediate. It starts with an idea of
how the system should work to satisfy a use case, but it needs reworking and detailing
in order to be documented. It must be checked against (or mixed with) non-functional
requirements, and of course, may change as the project goes on. In other words, the life
cycle of requirements can be summarized as follows. Each phase has an output, which is
the input for the following one (the path could be non linear, as we will see):

+ Gathering: Collection of use cases and desired system features, in an unstructured
and raw format. This is done in various ways, including interviews, collective
sketches, and brainstorming meetings, including both the customer and the internal
team. Event Storming (which we will see soon) is a common structured way to
conduct brainstorming meetings, but less structured techniques are commonly
used here, such as using sticky notes to post ideas coming from both customers and
internal teams. In this phase, the collection of data usually flows freely without too
much elaboration, and people focus more on the creative process and less on the
details and impact of the new features. The output for this phase is an unstructured
list of requirements, which may be collected in an electronic form (a spreadsheet or
text document), or even just a photograph of a wall with sticky notes.

o Vetting: As a natural follow-up, in this phase the requirements output from the
previous phase is roughly analyzed and categorized. Contradicting and unfeasible
topics must be addressed. It's not unusual to go back and forth between this phase
and the previous one. The output here is still an unstructured list, similar to the one
we got from the previous step. But we started to polish it, by removing duplicates,
identifying the requirements that need more details, and so on.

Introducing requirements engineering 35

 Analysis: In this phase, it's time to conduct a deeper analysis of the output from the
previous phase. This includes identifying the impact of the implementation of every
new feature, analyzing the completeness of the requirement (desired behavior on a
significant list of inputs, corner cases, and validation), and the prioritization of the
requirement. While not necessary, it is not unusual in this case to have a rough idea
of the implementation costs of each requirement. The output from this step is a far
more stable and polished list, basically a subset of the input we got. But we are still
talking about the unstructured data (not having an ID or missing some details, for
example), which is what we are going to address in the next phase.

« Specification: Given that we've completed the study of each requirement, it's
now time to document it properly, capturing all the aspects explored so far. We
may already have drafts and other data collected during the previous phases (for
example, schemas on paper, whiteboard pictures, and so on) that just need to be
transcribed and polished. The documentation redacted in this phase has to be
accessible and updatable throughout the project. This is essential for tracking
purposes. As an output of this phase, you will have each requirement checked and
registered in a proper way, in a document or by using a tool. There are more details
on this in the Collecting requirements — formats and tools section of this chapter.

« Validation: Since we got the formal documentation of each requirement as an output
of the previous phase, it is a best practice to double-check with the customer whether
the final rework covers their needs. It is not unusual for, after seeing the requirements
on paper, a step back to the gathering phase to have to be made in order to refocus
on some use cases or explore new scenarios that have been uncovered during the
previous phases. The output of this phase has the same format as the output of the
previous phase, but you can expect some changes in the content (such as priorities or
adding/removing details and contents). Even if some rework is expected, this data can
be considered as a good starting point for the development phase.

36 Software Requirements — Collecting, Documenting, Managing

So, the requirement life cycle can be seen as a simple workflow. Some steps directly lead to
the next, while sometimes you can loop around phases and step backward. Graphically, it
may look like the following diagram:

—3

Gathering |:> |:> Specification E> Validation

ﬁ@]

Figure 2.1 - Software requirements life cycle

As you can see in the previous diagram, software requirements specification is often more
than a simple phase of the software life cycle. Indeed, since requirements shape the software
itself, they may follow a workflow on their own, evolving and going through iterations.

As per the first step of this flow, let's have a look at requirements gathering.

Discovering and collecting requirements

The first step in the requirements life cycle is gathering. Elicitation is an implicit part of
that. Before starting to vet, analyze, and ultimately document the requirements, you need
to start the conversation and start ideas flowing.

To achieve this, you need to have the right people in the room. It may seem trivial, but often
it is not clear who the source of requirements should be (for example, the business, a vague
set of people including sales, executive management, project sponsors, and so on). Even if
you manage to have those people onboard, who else is relevant for requirement collection?

Discovering and collecting requirements 37

There is no golden rule here, as it heavily depends on the project environment and
team composition:

 You will need for sure some senior technical resources, usually lead architects.
These people will help by giving initial high-level guidance on technical feasibility
and ballpark effort estimations.

 Other useful participants are enterprise architects (or business architects), who
could be able to evaluate the impact of the solution on the rest of the enterprise
processes and technical architectures. These kinds of profiles are of course more
useful in big and complex enterprises and can be less useful in other contexts (such
as start-ups). As a further consideration, experienced people with this kind of
background can suggest well-known solutions to problems, compared with similar
applications already in use (or even reusing functionalities where possible).

+ Quality engineers can be a good addition to the team. While they may be less
experienced in technical solutions and existing applications, they can think about
the suggested requirements in terms of test cases, narrowing them down and
making them more specific, measurable, and testable.

« Security specialists can be very helpful. Thinking about security concerns early in
the software life cycle can help to avoid surprises later on. While not exhaustive,
a quick assessment of the security impacts of proposed requirements can be very
useful, increasing the software quality and reducing the need to rework.

Now that we have all the required people in a room, let's look at a couple of exercises to
break the ice and keep ideas flowing to nail down our requirements.

The first practice we will look at is the lean canvas. This exercise is widely used in the
start-up movement, and it focuses on bringing the team together to identify what's
important in your idea, and how it will stand out from the competition.

The lean canvas

The lean canvas is a kind of holistic approach to requirements, focusing on the product's
key aspects, and the overall business context and sustainability.

Originating as a tool for start-ups, this methodology was developed by Ash Maurya (book
author, entrepreneur, and CEO at LEANSTACK) as an evolution/simplification of the
Business Model Canvas, which is a similar approach created by Alexander Osterwalder
and more oriented to the business model behind the product. This method is based on a
one-page template to gather solution requirements out of a business idea.

38

Software Requirements — Collecting, Documenting, Managing

The template is made of nine segments, highlighting nine crucial aspects that the final
product must have:

1 Y 3 9
Probler | Solution Junique Unkaic ustorner
value Advantage [SeI™e nts
'Pro‘aos'tﬁon
' 5
: i Channels

L) 6
Cost Structure Revenue Streams

Figure 2.2 - The lean canvas scaffold

Note that the numbering of each segment reflects the order in which the sections should
be filled out. Here is what each segment means:

1.
2.

Problem: What issues will our customers solve by using our software product?

Customer Segments: Who is the ideal person to use our software product (that is, the
person who has the problems that our product will solve)?

Unique Value Proposition: Why is our software product different from other
potential alternatives solving similar problems?

Solution: How will our software product solve the problems in section 1?

Channels: How will we reach our target customer? (This is strictly related to how we
will market our software solution.)

Revenue Streams: How we will make money out of our software solution?

Cost Structure: How much will it cost to build, advertise, and maintain our
software solution?

Key Metrics: What are the key numbers that need to be used to monitor the health of
the project?

Unfair Advantage: What's something that this project has that no one else can
copy/buy?

Discovering and collecting requirements 39

The idea is to fill each of these areas with one or more propositions about the product's
characteristics. This is usually done as a team effort in an informal setting. The canvas
is pictured on a whiteboard, and each participant (usually product owners, founders,
and tech leads) contributes ideas by sticking Post-it notes in the relevant segments. A
postprocess collective phase usually follows, grouping similar ideas, ditching the less
relevant ideas, and prioritizing what's left in each segment.

As you can see, the focus here is shifted toward the feasibility of the overall project, instead
of the detailed list of features and the specification. For this reason, this methodology is
often used as a support for doing elevator pitches to potential investors. After this first
phase, if the project looks promising and sustainable from the business model point of
view, other techniques may be used to create more detailed requirement specifications,
including the ones already discussed, and more that we will see in the next sections.

While the lean canvas is more oriented to the business model and how this maps into
software features, in the next section we will explore Event Storming, which is a discovery
practice usually more focused on the technical modeling of the solution.

Event Storming

Event Storming is an agile and interactive way to discover and design business processes
and domains. It was described by Alberto Brandolini (IT consultant and founder of the
Italian Domain Driven Design community) in a now-famous blog post, and since then
has been widely used and perfected.

The nice thing about this practice is that it is very friendly and nicely supports
brainstorming and cross-team collaboration.

To run an Event Storming session, you have to collect the right people from across various
departments. It usually takes at least business and IT, but you can give various different
flavors to this kind of workshop, inviting different profiles (for example, security, UX,
testers) to focus on different points of view.

When you have the right mix of people in the room, you can use a tool to help them
interact with each other. When using physical rooms (the workshop can also be run
remotely), the best tool is a wall plus sticky notes.

40 Software Requirements — Collecting, Documenting, Managing

The aim of the exercise is to design a business process from the user's point of view. So
how do you do that?

1. You start describing domain events related to the user experience (for example,
a recipient is selected). Those domain events are transcribed on a sticky note,
traditionally orange, and posted to the wall respecting the temporal sequence.

2. You then focus on what has caused the domain event. If the cause is a user
interaction (for example, the user picks a recipient from a list), it's known as a
command and tracked as a blue sticky note, posted close to the related event.

3. You may then draft the user behind the command (for example, a customer of
the bank). This means drafting a persona description of the user carrying out the
command, tracking it on a yellow sticky note posted close to the command.

4. If domain events are generated from other domain events (for example, the selected
recipient is added to the recently used contacts), they are simply posted close to
each other.

5. Ifthere are interactions with external systems (for example, the recipient is sent to
a CRM system for identification), they are tracked as pink sticky notes and posted
near to the related domain event.

Let's have a look at a simple example of Event Storming. The following is just a piece of a
bigger use case; this subset concisely represents the access of a user to its transactions list.
The use case is not relevant here, it's just an example to show the main components of
this technique:

«——— Aggregate

Command
Domain
Events

External

Figure 2.3 - The Event Storming components

Discovering and collecting requirements 41

In the diagram, you can see a small but complete subset of an Event Storming session,
including stickies representing the different components (User, Command, and Domain
Events) and the grouping representing the aggregates.

What do you achieve from this kind of representation?

+ A shared understanding of the overall process.

« A clustering of events and commands, identifying the so-called aggregates. This
concept is very important for the modeling of the solution, and we will come back
to this in Chapter 4, Best Practices for Design and Development, when talking about
Domain-Driven Design.

o The visual identification of bottlenecks and unclear links between states of
the system.

It's important to note that this methodology is usually seen as a scaffold. You may want to
customize it to fit your needs, tracking different entities, sketching simple user interfaces
to define commands, and so on. Moreover, these kinds of sessions are usually iterative.
Once you've reached a complete view, you can restart the session with a different audience
to further enrich or polish this view, to focus on subdomains and so on.

In the following section, we will explore some alternative discovery practices.

More discovery practices

Requirements gathering and documentation is somewhat of a composite practice. You
may find that after brainstorming sessions (for example, a lean canvas, Event Storming, or
other comparable practices), other requirement engineering techniques may be needed to
complete the vision and explore some scenarios that surfaced during the other sessions.
Let's quickly explore these other tools so you can add them to your toolbox.

Questionnaires

Questions and answers are a very simple and concise way of capturing fixed points about a
software project. If you are capable of compiling a comprehensive set of questions, you can
present your questionnaire to the different stakeholders to collect answers and compare
the different points of view.

42 Software Requirements — Collecting, Documenting, Managing

The hard part is building such a list of questions. You may have some ideas from previous
projects, but given that questions and answers are quite a closed-path exercise, it isn't
particularly helpful if you are at the very beginning of the project. Indeed, it is not the
best method to use if you are starting from a blank page, as it's not targeted at nurturing
creative solutions and ideas. For this reason, I would suggest proceeding with this
approach mostly to detail ideas and use cases that surfaced in other ways (for example,
after running brainstorming sessions).

Mockups and proofs of concepts

An excellent way to clarify ideas is to directly test what the product will look like by
playing with a subset of functionalities (even if fake or just stubbed). If you can start to
build cheap prototypes, or even just mockups (fake interfaces with no real functionalities
behind the scenes), you may be able to get non-technical stakeholders and final users on
board sooner, as you give them the opportunity to interact with the product instead of
having to imagine it.

This is particularly useful in UX design, and for showcasing different solutions. Moreover,
in modern development, this technique can be evolved toward a shorter feedback loop
(release early, release often), having the stakeholders test alpha releases of the product
instead of mockups so they can gain an understanding of what the final product will look
like and change the direction as soon as possible.

A/B testing

A further use for this concept is to have the final users test by themselves and drive the
product evolution. This technique, known as A/B testing, is used in production by high-
performing organizations and requires some technological support to be implemented.
The principle is quite simple: you pick two (or more) alternative features, put them

into production, and measure how they perform. In an evolutionary design, the best
performing will survive, while the others will be discarded.

As you can imagine, the devil is in the details here. Implementing more alternatives and
discarding some of them may be expensive, so often there are just minor differences between
them (for example, the color or position of elements in the UT). Also, the performance must
be measurable in an objective way, for example, in e-commerce you might measure the
impact on purchases, or in advertising the conversions of banners and campaigns.

Analyzing requirements 43

Business intelligence

Another tool to complete and flesh out the requirement list is business intelligence. This
might mean sending surveys to potential customers, exploring competitor functionalities,
and doing general market research. You should not expect to get a precise list of features
and use cases by using only this technique, but it may be useful for completing your view
about the project or coming up with some new ideas.

You may want to check whether your idea for the finished system resonates with final
customers, how your system compares with competitors, or whether there are areas in
which you could do better/be different. This tool may be used to validate your idea or
gather some last pieces to complete the picture. Looking at Figure 2.1, this is something
you may want to do during the validation phase.

Now, we have collected a wide set of requirements and points of view. Following the
requirements life cycle that we saw at the beginning of this chapter, it is now time for
requirements analysis.

Analyzing requirements

The discovery practices that we've seen so far mostly cover the gathering and vetting of
requirements. We've basically elicited from the stakeholders details of the desired software
functionalities and possibly started organizing them by clustering, removing duplicates,
and resolving macroscopic conflicts.

In the analysis phase, we are going to further explore the implications of the requirements
and complete our vision of what the finished product should look like. Take into account
that product development is a fluid process, especially if you are using modern project
management techniques (more on that in Chapter 5, Exploring the Most Common
Development Models). For this reason, you should consider that most probably not

every requirement defined will be implemented, and certainly not everything will be
implemented in the same release - you could say we are shooting at a moving target.
Moreover, it is highly likely that more requirements will be developed later on.

For this reason, requirements analysis will probably be performed each time, in an
iterative approach. Let's start with the first aspect you should consider when analyzing
the requirements.

Checking for coherence and feasibility

In the first section, we clearly stated that a requirement must be consistent and
implementable. That is what we should look for in the analysis phase.

44 Software Requirements — Collecting, Documenting, Managing

There is no specific approach for this. It's a kind of qualitative activity, going through
requirements one by one and cross-checking them to ensure they are not conflicting with
each other. With big and complex requirement sets, this activity may be seen as a first
pass, as no explicit conflict may arise later during design and implementation. Similar
considerations may be made with regard to feasibility. In this phase, it's important to catch
the big issues and identify the requirements that seem to be unfeasible, however, more
issues can arise during later phases.

If incoherent or unfeasible requirements are spotted, it's crucial to review them with the
relevant stakeholders (usually business), in order to reconsider the related features, and
make changes. From time to time, small changes to the requirement can make it feasible.
A classic scenario is related to picking a subset of the data or making similar compromises.
In our mobile payments example, it may not be feasible to show instantaneously the
whole list of transactions updated in real time, however, it could be a good compromise to
show just a subset of them (for example, last year) or have a small visualization delay (for
example, a few seconds) when new transactions occur.

Checking for explicitness and testability

Continuing with requirements characteristics, it is now time to check the explicitness
and testability of each requirement. This may be a little more systematic and quantitative
compared to the previous section. Essentially, you should run through the requirements
one by one and check whether each requirement is expressed in a defined way, making it
easy to understand whether the implementation has been completed correctly. In other
words, the requirement must be testable and it is best if it is testable in an objective and
automatable way.

Testing for explicitness brings with it the concept of completeness. Once a requirement
(and the related feature) is accepted, all the different paths must be covered in order to
provide the product with predictable behavior in most foreseeable situations. While this
may seem hard and complex, in most situations it's enough to play with possible input
ranges and conditional branches to make sure all the possible paths are covered. Default
cases are another important aspect to consider; if the software doesn't know how to react
to particular conditions it's a good idea to define reasonable, standard answers to fall into.

Checking non-functional requirements and constraints

As the last step, it's important to run through the requirements list, looking for
non-functional requirements and constraints. The topic here is broad and subjective.
It's likely not possible (nor useful) to explicate all the non-functional requirements and
constraints and put them on our list. Most of them are shared with existing projects,
regulated by external parties, or simply not known.

Specifying requirements according to the IEEE standard 45

However, there are areas that have an important impact on the project implementation,
and for this reason, must be considered in the analysis phase.

One usual suspect here is security. All the considerations about user sessions, what to do
with unauthenticated users, and how to manage user logins and such have implications
for the feasibility and complexity of the solution, other than having an impact on the user
experience. Analog reasoning can be made for performance. As seen in the Checking for
coherence and feasibility section, small changes in the amount of data and the expected
performances of the system may make all the difference. It's not unusual to have
non-technical staff neglecting these aspects or expecting unreasonable targets. Agreeing
(and negotiating) on the expected result is a good way to prevent issues later in the project.

Other considerations of non-functional requirements and constraints may be particularly
relevant in specific use cases. Take into account that this kind of reasoning may also be
carried over into the project planning phase, in which constraints in budget or timeframe
may drive the roadmap and release plan.

Now, we've gone through the analysis phase in the software requirements life cycle. As
expected, we will now approach the specification phase. We will start with a very formal
and structured approach and then look at a less structured alternative.

Specifying requirements according to the IEEE
standard

The Institute of Electrical and Electronics Engineers (IEEE) has driven various efforts
in the field of software requirements standardization. As usual, in this kind of industry
standard, the documents are pretty complete and extensive, covering a lot of aspects in a
very verbose way.

The usage of those standards may be necessary for specific projects in particular
environments (for example, the public sector, aviation, medicine). The most famous
deliverable by IEEE in this sense is the 830-1998 standard. This standard has been
superseded by the ISO/IEEE/IEC 29148 document family.

In this section, we are going to cover both standards, looking at what the documents
describe in terms of content, templates, and best practices to define requirements adhering
to the standard.

46 Software Requirements — Collecting, Documenting, Managing

The 830-1998 standard

The IEEE 830-1998 standard focuses on the Software Requirement Specification
document (also known as SRS), providing templates and suggestions on content to
be covered.

Some concepts are pretty similar to the ones discussed in the previous sections. The
standard states all the characteristics that a requirement specification must have. Each
requirement specification should be the following:

o Correct

« Unambiguous

o Complete

o Consistent

« Ranked for importance and/or stability
o Verifiable

« Modifiable

o Traceable

As you can see, this is similar to the characteristics of requirements. One interesting new
concept added here is the ranking of requirements. In particular, the document suggests
classifying the requirements by importance, assigning priorities to requirements, such as
essential, conditional, optional, and/or stability (stability refers to the number of expected
changes to the requirement due to the evolution of the surrounding organization).

Another interesting concept discussed in this standard is prototyping. I would say that
this is positively futuristic, considering that this standard was defined in 1998. Well
before the possibility to cheaply create stubs and mocks, as is normal today, this standard
suggests using prototypes to experiment with the possible outcome of the system and use
it as a support for requirements gathering and definition.

The last important point I want to highlight about IEEE 830-1998 is the template. The
standard provides a couple of samples and a suggested index for software requirements
specifications. The agenda includes the following:

« Introduction: Covering the overview of the system, and other concepts to set the
field, such as the scope of the document, purpose of the project, list of acronyms,
and so on.

Specifying requirements according to the IEEE standard 47

 Overall description: Describing the background and the constructs supporting
the requirements. Here, you may define the constraints (including technical
constraints), the interfaces to external systems, the intended users of the system (for
example, the skill level), and the product functions (intended to give an overview of
the product scope, without the details that map to specific requirements).

« Specific requirements: This refers to the requirements themselves. Here, everything
is expected to be specified with a high amount of detail, focusing on inputs (including
validation), expected outputs, internal calculations, and algorithms. The standard
offers a lot of suggestions for topics that need to be covered, including database
design, object design (as in object-oriented programming), security, and so on.

 Supporting information: Containing accessory information such as a table of
contents, index, and appendixes.

As you can see, this SRS document may appear a little verbose, but it's a comprehensive
and detailed way to express software requirements. As we will see in the next section,
IEEE and other organizations have superseded this standard, broadening the scope and
including more topics to be covered.

The 29148 standard

As discussed in the previous sections, the 830-1998 standard was superseded by a broader
document. The 29148 family of standards represents a superset of 830-1998. The new
standard is rich and articulated. It mentions the SRS document, following exactly the
same agenda but adding a new section called verification. This section refers to specifying
a testing strategy for each element of the software, suggesting that you should define a
verification for each element specified in the other sections of the SRS.

Other than the SRS document, the 29148 standard suggests four more deliverables. Let's
have a quick look at them:

+ The Stakeholder Requirements Specification: This places the software project into
the business perspective, analyzing the business environment around it and the
impact it will have by focusing on the point of view of the business stakeholders.

o The System Requirements Specification: This focuses on the technical details of
the interactions between the software being implemented and the other system
composing the overall architecture. It specifies the domain of the application and
the inputs/outputs.

48 Software Requirements — Collecting, Documenting, Managing

« System Operational Concept: This describes, from the user's point of view,
the system's functionality. It takes a point of view on the operation of the
system, policies, and constraints (including supported hardware, software, and
performance), user classes (meaning the different kinds of users and how they
interact with the system), and operational modes.

« Concepts of Operations: This is not a mandatory document. When provided, it
addresses the system as a whole and how it fits the overall business strategy of the
customer. It includes things such as the investment plan, business continuity,
and compliance.

As we have seen, the standards documents are a very polished and complete way to
rationalize the requirements and document them in a comprehensive way. However,
sometimes it may be unpractical to document the requirements in a such detailed and
formalized way. Nevertheless, it's important to take these contents as a reference, and
consider providing the same information, even if not using the very same template or level
of details.

In the next section, we will have a look at alternative simplified formats for requirements
collection and the tools for managing them.

Collecting requirements - formats and tools

In order to manage and document requirements, you can use a tool of your choice.
Indeed, many teams use electronic documents to detail requirements and track their
progression, that is, in which stage of the requirement life cycle they are. However, when
requirements grow in complexity, and the size of the team grows, you may want to start
using more tailored tools.

Let's start by having a look at the required data, then we will focus on associated tooling.

Software requirements data to collect

Regardless of the tool of your choice, there is a subset of information you may want
to collect:

o ID: A unique identifier will be needed since the requirement will be cross-
referenced in many different contexts, such as test cases, documentation, and code
comments. It can follow a naming convention or simply be an incremental number.

Collecting requirements - formats and tools 49

Description: A verbal explanation of the use case to be implemented.
Precondition: (If relevant) the situation that the use case originates from.

Essential: How essential the requirement is, usually classified as must have, should
have, or nice to have. This may be useful in order to filter requirements to be
included in a release.

Priority: A way to order/cluster requirements. Also, a useful way to filter
requirements to be included in a release.

Source: The author of the requirement. It may be a department, but it is better if
there is also a named owner to contact in case of clarifications being needed.

Group: A way to cluster requirements for functional areas. Also, can be a useful way
to collect a set of requirements to implement in a release.

Parent: This is optional, in case you want to implement a hierarchy with a complex/
high-level requirement made of a set of sub-requirements.

These are the basic attributes to collect for each software requirement, to enrich with any
further column that may be relevant in your context.

You may then want to track the implementation of each requirement. The attributes to do
so usually include the following:

Status: A synthetic description of the implementation status, including states such
as UNASSIGNED, ASSIGNED, DEVELOPMENT, TESTING, and COMPLETE.

Owner: The team member to whom this requirement is assigned. It may be a
developer, a quality engineer, or someone else, depending on the status.

Target release: The software release that is targeted to include this requirement.
Blocker: Whether this requirement is mandatory for this release or not.

Depends on: Whether this requirement depends on other requirements to be
completed (and what they are) before it can be worked on.

Also, in this case, this is a common subset of information useful for tracking the
requirement status. It may be changed, depending on the tooling and the project
management techniques used in your particular context. Let's now have a look at tools to
collect and manage this information.

50 Software Requirements — Collecting, Documenting, Managing

Collecting software requirements in spreadsheets

Looking at the list of attributes described in the previous section, you can imagine that
these requirements can be easily collected in spreadsheets. It's a tabular format, with one
requirement per row, and columns corresponding to the information we've discussed.
Also, you could have the status tracking in the same row or associated by ID in a different
sheet. Moreover, you can filter the sheet by attribute (for example, priority, group, status),
sort it, and limit/validate the inputs where relevant (for example, restricting values from a
specified list). Accessory values may also be added (for example, last modified date).

This is what a requirements spreadsheet might look like:

. 8 c o 3 3 s H
L 1D DESCRIPTION PRECONDITION ESSENTIAL PRIORITY SOURCE GROUP PARENT
2 1] The application must be awesome The application was not awesome| Must Have - | High - |owner@awesome.xyz | Core requirements] -
3 2] Jedis can log in using the force The Jedi user is not logged Should Have - | Medium - | luke@awesome.xyz Security 1
4 3| The user interface must be localized in Wookiee| The user is identified as a Wookie| Nice to Have ~ | Low ~ | chewbe@awesome.xyz| Localization
s
6
7

+
L[}

Requirements v Status ~
Figure 2.4 - A requirements spreadsheet

As mentioned, we can then have a sheet for tracking the progression of each requirement.
It may look like the example that follows:

I A B ® ‘ D ‘ E ‘ F G

1 REQ ID STATUS OWNER TARGET RELEASE BLOCKER DEPENDS ON LAST MODIFIED
2 1|QE - | Obi 0.1 Yes - 09/07/2020

3 2|UNASSIGNED -~ | lan 0.1.1 No 1 14/07/2020

4 3| DEVELOPMENM ~ | Mace 0.2 No 1 12/07/2020

5

6

7

+ = Requirements ~ Status ~

Figure 2.5 - Status tracking sheet

In the next sections, we will have a look at tools that can be used to support requirements
gathering and documentation.

Specialized tools for software requirements
management

As mentioned in the previous section, with bigger teams and long-term projects,
specialized tools for requirements management can be easier to use than a shared
document/spreadsheet.

Collecting requirements - formats and tools 51

The most useful feature is usually having a centralized repo, avoiding back and forth (and
a lack of synchronization), which happens when using documents. Other interesting
features to look for are auditing (tracking changes), notifications, reporting, and advanced
validation/guided input. Also, integration with source code management (for example,
associating features with commits and branches) is pretty common and useful.

The software for requirements management is usually part of a bigger suite of utilities for
project management. Here are some common products:

« Jirais a pretty widespread project management toolkit. It originated as an issue
tracking tool to track defects in software products. It's commonly used for tracking
features too. It may also be extended with plugins enriching the functionalities of
feature collection, organizing, and reporting.

« Redmine is an open source tool and includes many different project management
capabilities. The most interesting thing about it is its customizability, enabling you
to track features, associate custom fields, reference source code management tools
(for example, Git), and define Gantt charts/calendars.

o IBM Rational DOORS is commercial software for requirements management,
very complete and oriented to mid-large enterprises. It is part of the Rational suite,
originally developed by Rational Software (now part of IBM), which is also famous
for contributing to the creation of UML notation, which we will discuss in the
next chapter.

The selection of a requirements management tool is a complex process, involving cost
analysis, feature comparison, and more, which is way beyond the goal of this book.

Spreadsheets versus tools

It is a common debate whether to use specialized tools versus spreadsheets (or
documents) for managing lists of requirements. It is a common path to start using a
simpler approach (such as spreadsheets) and move to a tool once the project becomes too
big or too complex to manage this way. Moreover, managers and non-technical users are
more willing to use spreadsheets because they are more comfortable with such technology.
Conversely, tech teams find it is often more effective to work with specialized tools. As
usual, there is no one size that fits all, but honestly, the benefits of using a dedicated tool
are many.

52 Software Requirements — Collecting, Documenting, Managing

The most immediate is having a centralized repository. Tools for requirement
management are made to be used in real time, acting as a central, single source of truth.
This allows us to avoid back and forth (and lack of synchronization), which happens when
using documents (while you could object here that many Office suites offer real-time
sharing and collaborative editing, nowadays).

Other interesting features included with a specialized tool are auditing (tracking changes),
notifications, reporting, and advanced validation/guided input.

Also, the integration with the source code management (for example, associating features
with commits and branches) is pretty common and appreciated by the development
teams. Management can also benefit from planning and insight features, such as charts,
aggregated views, and integration with other project management tools.

So, at the end of the day, I strongly advise adopting a full-fledged requirements
management tool instead of a simple spreadsheet if that is possible.

In the next section, we will explore requirements validation, as a final step in the software
requirements life cycle.

Validating requirements

As we've seen, the final phase of the requirements life cycle involves validating the
requirements. In this phase, all the produced documentation is expected to be reviewed
and formally agreed by all the stakeholders.

While sometimes neglected and considered optional, this phase is in fact very important.
By having a formal agreement, you will ensure that all the iterations on the requirements
list, including double-checking and extending partial requirements, still reflect the
original intentions of the project.

The business makes sure that all the advantages and benefits will be achieved, while the
technical staff will check that the features are correctly mapped in a set of implementable
requirements so that the development team will clearly understand what's expected.

This sign-off phase could be considered the point at which the project first truly kicks off.
At this point, we have a clearer idea of what is going to be implemented. This is not the
final word, however; when designing the platform and starting the project plans, you can
expect the product to be remodeled. Maybe just a set of features will be implemented,
while other functionalities will be put on paper later.

Case studies and examples 53

In this section, we took a journey through the requirements life cycle. As already said,
most of these phases can be considered iterative, and more than one loop will be needed
before completing the process. Let's have a quick recap of the requirements life cycle and
the practices we have seen so far:

+ Gathering and vetting: As we have seen, these two phases are strictly related and
involve a cross-team effort to creatively express ideas and define how the final
product should look. Here, we have seen techniques for brainstorming such as the
lean canvas, Event Storming, and more.

« Analysis: This phase includes checking the coherence, testability, and so on.

o Specification: This includes the IEEE standard and some less formalized standards
and tools.

« Validation: This is the formal sign-off and acceptance of a set of requirements.
As said, it's not unusual to see a further rework of such a set by going back to the
previous phases, in an iterative way.

In the next section, we will continue to look at our mobile payments example, focusing on
the requirements analysis phase.

Case studies and examples

Continuing with the case study about our mobile payments solution, we are going to look
at the requirements gathering phase. For the sake of simplicity, we will focus only on a
small specific scenario: a peer-to-peer payment between two users of the platform.

The mobile payment application example

As we are doing in every chapter, let's have a look at some examples of the concepts
discussed in this chapter applied to the mobile payment application that we are using as a
case study.

54 Software Requirements — Collecting, Documenting, Managing

Requirements life cycle

In the real world, the life cycle of requirements will reasonably take weeks (or months),
adding up to a lot of requirements and reworking of them, so it is impractical to build
a complete example of the requirements life cycle for our mobile payment scenario.
However, I think it will be interesting to have a look at how one particular requirement
will evolve over the phases we have seen:

1.

In the gathering phase, it is likely we will end up with a lot of ideas around ease of
use and security for each payment transaction. Most of the participants will start
to think from an end user perspective, focusing on the user experience, and so it's
likely we will have sketches and mockups of the application. Some more ideas will
revolve around how to authorize the payment itself along with its options (how
about a secret swipe sequence, a PIN code, a face ID, a One-Time Password (OTP),
or a fingerprint?).

In the vetting phase (likely during, or shortly after, the previous phase), we will
cluster and clean up what we have collected. The unpractical ideas will be dropped
(such as the OTP, which may be cumbersome to implement), while others will be
grouped (face ID and fingerprint) under biometric authorization. More concepts
will be further explored and detailed: What does it mean to be fast and easy to use?
How many steps should be done to complete the payment? Is entering a PIN code easy
enough (in cases where we cannot use biometric authorization)?

It's now time to analyze each requirement collected so far. In our case, maybe the
payment authorization. It is likely that the user will be presented with a screen
asking for biometric authentication. But what happens if the device doesn't have a
supported hardware? Should the customer be asked for other options, such as a PIN
code? What should happen if the transaction is not authorized? And of course, this
kind of reasoning may go further and link more than one requirement: What if

a network is not available? What should happen after the transaction is completed
successfully? Maybe the information we have at that moment (where the customer is,
what they have bought, the balance of their account) allows for some interesting use
cases, such as contextual advertising, offering discounts, and so on.

Now that we have clarified our requirements (and discovered new ones), it's time
for specification. Once we pick a format (IEEE, or something simpler, such as a
specialized tool or a spreadsheet), we start inserting our requirements one by one.
Now, it's time to go for the maximum level of details. Let's think about bad paths
(what happens when things go wrong?), corner cases, alternative solutions, and so on.

Case studies and examples 55

5. The last phase is the validation of what we have collected into our tool of choice.
It is likely that only a subset of the team has done the analysis and specification,
so it's good to share the result of those phases with everyone (especially with
non-technical staff and the project sponsors) to understand whether there is
anything missing: maybe the assumptions we have made are not what they
were expecting. It's not uncommon that having a look at the full list will trigger
discussions about prioritization or brand-new ideas (such as the one about
contextual advertising that we mentioned in the analysis phase).

In the next sections, we will see some more examples of the specific phases and techniques.

Lean canvas for the mobile payment application

The lean canvas can be imagined as an elevator pitch for getting sponsorship for this
application (such as for getting funds or approval for the development). In this regard, the
lean canvas is a kind of conversation starter when it comes to requirements. It could be
good to identify and detail the main, most important features, but you will probably need
to use other techniques (such as the ones described so far) to identify and track all the
requirements with a reasonable level of detail.

With that said, here is how I imagine a lean canvas could look in this particular case. Of
course, I am aware that other mobile and contactless solutions exist, so consider this just
as an example. For readability purposes, I'm going to represent it as a bullet list. This is

a transcribed version, as it happens after collecting all those aspects as sticky notes on

a whiteboard:

+ Problem: The payment procedure is cumbersome and requires cash or card.
Payment with card requires a PIN code or a signature. The existing alternatives are
credit or debit cards.

« Customer segment: Everybody with a not-too-old mobile phone. The early
adopters could be people that don't own a credit card or don't have one to hand
(maybe runners, who don't bring a wallet but only a mobile phone, or office workers
during their lunch/coffee break).

 Unique value proposition: Pay with one touch, safely.

+ Solution: A sleek, fast, and easy-to-use mobile application, allowing users to
authorize payment transactions with biometric authentication.

56 Software Requirements — Collecting, Documenting, Managing

« Unfair advantage: Credit/debit cards that don't need biometric authentication.
(Of course I am aware, as I said, that contactless payments are available with credit
cards, and other NFC options are bundled with mobile phones. So, in the real
world, our application doesn't really have an advantage over other existing options.)

« Revenue streams: Transaction fees and profiling data over customer spending habits.

o Cost structure: App development, hosting, advertising. (In the real world, you
may want to have a ballpark figure for it and even have a hypothesis of how many
customers/transactions you will need to break even. This will put you in a better
position for pitching the project to investors and sponsors.)

« Key metrics: Number of active users, transactions per day, average amount
per transaction.

 Channels: Search engine optimization, affiliation programs, cashback programs.

In the next section, we'll look at Event Storming for peer-to-peer payments.

Event Storming for peer-to-peer payments

As we saw in the Event Storming section, in an Event Storming session it's important to
have a variety of representations from different departments in order to have meaningful
discussions. In this case, let's suppose we have business analysts, chief architects, site
reliability engineers, and UX designers. This is what our wall may look like after our
brainstorming session:

g
E
i

k=]
Pick reciient Sekect the S
ﬂcceis the £rom 5*;3.’“ Amount of Ecere g
mobile. noney m:
A recipient m Payment

\en | i sekected "ecorded equest iy S w
is Baance ang \ accepieq © E
verified fransactions #he recigient i E o
‘ loaded added to the. the o >
i recipient ig m Reds o () W

| S iy

T g
DM Lﬁj\ini ; DM R %,%

Figure 2.6 — Event Storming for peer-to-peer payment

Event Storming for peer-to-peer payments 57

As you can see from the preceding diagram, even in this simplified example we begin to
develop a clear picture of the people involved in this use case and the external systems.

We can see that two systems are identified, Identity Management (IDM) for dealing with
customer profiles and Backend for dealing with balances and transactions.

In terms of command and domain events, this is something you may want to reiterate in
order to understand whether more interactions are needed, testing unhappy paths and
defining aggregates (probably the hardest and most interesting step toward the translation
of this model into software objects).

In the next section, we will see what a related spreadsheet of requirements might look like.

Requirements spreadsheet

Now, let's imagine we successfully completed the Event Storming workshop (or even better,
a couple of iterations of it). The collected inputs may be directly worked on and translated
into software, especially if developers actively participated in the activity. However, for the
sake of tracking, double-checking, and completing the requirements list, it's common to
translate those views into a document with a different format. While you can complete a
standard IEEE requirement document, especially if you can do some further reworking and
have access to all the stakeholders, a leaner format is often more suitable.

Now, starting from the features we have identified before, let's start to draft a spreadsheet
for collecting and classifying the related requirements:

] - 8 E o € G = u i
i ID DESCRIPTION PRECONDITION ESSENTIAL PRIORITY SOURCE GROUP PARENT NOTES
2 The user is not logged in
R A user is able to access the . : P N .|ste Security and
3 mobile application The user is prf:wsmned in the systgm Must Have High {Product Management)| Identity
3 The user provides the right credentials
s Auser sees their balance |The user islogged in : Ste Core See
[g and transactions list Transaction list is not empty Should Have - | Medium (Product Management)| Features ° mockup
’ The user is greeted with a The user is logged in . Alessandra
- Nice to Have ~ |Low - " ux 2
] customized message A customized message is set {Marketing)
9 The user is logged in
The user can start a money g9 Must Have - | Medium - | Mauro (Product Core
10 transfer transaction The account has payments enabled Management) Features

Figure 2.7 - Requirements list of a peer-to-peer payment

As you can see, the list is not complete, however, it's already clear that from a concept nice
and concisely expressed on a couple of sticky notes, you can potentially derive a lot of
rows with requirements and relative preconditions.

58 Software Requirements — Collecting, Documenting, Managing

Moreover, it is often debated whether you should include all potential paths (for example,
including failed logins, error conditions, and other corner cases) in lists like these. The
answer is usually common sense; the path is specified if special actions come from it (for
example, retries, offering help, and so on). If it's just followed by an error message, this can
be specified elsewhere (for example, in the test list and in user acceptance documents).

Another relevant discussion is about supporting information. From time to time, you may
have important information to be conveyed in other formats. The most common example
is the user interface, commonly specified with graphical mockups. It is up to you whether
attaching the mockups somewhere else and referring to them in a field (for example,
notes), or directly embedding everything (a list of requirements plus graphic mockups)
into the same document is better. This is not very important, however, and it heavily
depends on your specific context and what makes your team feel comfortable.

Summary

In this chapter, we have covered a complete overview of software requirements. Knowing
the characteristics of a well-defined software requirement, how to collect it, and how to
document it is a very good foundation to build software architecture upon. Regardless
of the technology and methodologies used in your projects, these ideas will help you to
get your project up to speed and to build a collaborative, trusting relationship with your
business counterparts.

On the business side, the use of such tools and practices will allow for a structured way
to provide input to the technical team and track the progression and coverage of the
features implemented.

In the next chapter, we will look at software architecture modeling and what
methodologies can be used for representing an architectural design.

Further reading
o Ash Maurya, The Lean Canvas (https://leanstack.com/leancanvas)

« Alberto Brandolini, Introducing Event Storming (http://ziobrando.
blogspot.com/2013/11/introducing-event-storming.html)

o Atlassian, Jira Software (https://www.atlassian.com/software/jira)
« Jean-Philippe Lang, Redmine (https://www.redmine.org/)

o IBM, Rational Doors (https://www.ibm.com/it-it/products/
requirements-management)

3

Common
Architecture Design
Techniques

In the previous chapter, Chapter 2, Software Requirements — Collecting, Documenting,
Managing, we highlighted techniques to retrieve and analyze the features an application
should have. This is done by interacting with the business and other stakeholders and
describing what the desired behavior should be. We now have all the ingredients needed to
start baking our application. The first—very important—step is to define the architecture.

It is debated as to how much, in terms of resources, you should invest in this phase. Some
experts argue that architecture design is the most important phase, while others claim
that it's crucial to keep a flexible approach, being able to adapt the architecture while the
solution is evolving according to new ideas coming in or shifting external conditions.

For sure, both ideas are interesting and have some strong points. Whatever your point of
view on that is, it is really useful to have a clear understanding of what the most common
ways of documenting the architectures you will design are.

60 Common Architecture Design Techniques

This is a topic we started to touch on in Chapter 1, Designing Software Architectures in Java
- Methods and Styles. But while in the first chapter the idea was to start sketching some
ideas and brainstorm potential solutions, in this chapter, we will cover a detailed design.
This means exploring different modeling techniques, walking through notation and
diagram types, and creating artifacts that are shareable and clear to understand for other
team members. In this chapter, you will learn about the following topics:

o Introducing marchitectures—impactful and purely demonstrative schemas
« Familiarizing ourselves with Unified Modeling Language (UML) notation
« Exploring ArchiMate

« Introducing the C4 model

o Other modeling techniques — Business Process Model and Notation (BPMN),
Decision Model and Notation (DMN), and arc42

« Case studies and examples

But first of all, let's start by having a look at a less structured but widely used architectural
style, with a funny and a bit of an ugly name: marchitectures.

Introducing marchitectures - impactful and
purely demonstrative schemas

With its name being a portmanteau of marketing and architecture, as you can imagine,
marchitectures are a very common tool to pitch your solution and get sponsorship (and
often the budget) for your project. You don't need to get into technical details, nor to cover
every aspect of the solution; the idea here is to give an idea of what the finished product
will look like.

From a content point of view, marchitectures are no more and no less than a polished
version of the first whiteboard sketches of a software architecture. This includes the same
vague meaning, incomplete vision, and mixed point of view that we discussed in Chapter 1,
Designing Software Architectures in Java — Methods and Styles.

Marchitectures often complement mockups of the User Interface (UI), marketing
research, and industry trends. You want to convince the stakeholders (budget owners,
investors, and so on) that your idea is a good one and that the underlying architecture
(and implementation) will be rock-solid, yet flexible enough to follow the evolutions that
the business will drive.

Familiarizing ourselves with UML notation 61

It is definitely an ambitious goal and is sometimes—inevitably—not fully met. Indeed, the
real architecture will often only partially look like what you defined in your marchitecture.

Marchitectures are often used by software vendors and for good reason. If you are pitching
a product (or a framework, or a service), you don't want to be too specific on what the
finished solution will look like. You just need to give a high-level idea of how your product
works. Maybe authentication will be different, and maybe you will need to integrate
third-party systems into the final picture, but the important thing is to have a shiny picture
of how good your architecture (marchitecture) looks. There is time to get into the nitty-
gritty details later. UML notation, which we will look at in the next section, is a very good
way to document those details.

Familiarizing ourselves with UML notation

There are things in this book that we need to treat with reverential respect; UML is one
of them. This modeling language is simply a piece of IT history. You should take into
account that UML is a very comprehensive and articulate standard, aimed at modeling
and representing a wide number of concepts. For this reason, going through the whole
specification is out of the scope of this book.

But by the end of this section, you will have a grasp of the UML philosophy, and we will
have covered practical examples of the most widespread UML diagrams.

Important Note

It's worthwhile deepening your knowledge of the UML language. To do this,
you will find plenty of resources on the web. I would also suggest you have a
look at the official UML website, and at The Unified Modeling Language User
Guide by Booch, Rumbaugh, and Jacobson (more information is available
in the Further reading section of this chapter), which is probably the most
important UML book, written by the original authors of the language.

Now, let's look at the fascinating UML genesis in the next section, where we will see how
UML started as a joint effort by different working groups that were all working to solve

a common problem: defining a language to break the barrier between designing and
implementing a software solution.

62 Common Architecture Design Techniques

Understanding the background to UML

UML's history began in the 1990s and is strictly related to object-oriented programming.

UML was born from an effort to standardize object modeling and the conceptual
representation of object-oriented software. A further objective was to create an object that
is both human- and machine-readable, supporting the life cycle starting from analysis, and
moving toward implementation and testing.

The history of the UML standard starts with a cross-company, meritocratic effort to find

a solution to common problems. This looks a lot like the open source development model.
Everybody is free to contribute and share ideas with the community, regardless of their
role or the company they are working for.

Let's look at an overview of what's contained in the UML framework.

Walking through the UML basics, as we discussed, UML was created to model
object-oriented systems, and in theory, diagrams created with UML can be automatically
translated into source code.

There are a number of interesting principles in the UML language, making it just as useful
and relevant today, more than 20 years after its inception, as when it was created. Let's have
a look at some of them here:

« UML is independent of the development methodology, meaning that it can be
used even in modern Agile and DevOps teams. Some of the diagrams introduced
by UML are commonly used in those contexts too. The goal of the language is to
visualize, specify, construct, and document OO systems.

o UML is usually associated with diagrams and graphical artifacts. While they are,
indeed, a core concept of the language, UML also defines the related semantics. This
means that the reasoning for everything is well defined and formalized so that both
a trained person and a machine can understand what a UML diagram represents in
all its details.

« UML concepts are built upon three different kinds of building blocks—namely,
things, relationships, and diagrams. These are further organized into subcategories.
For each of those concepts, a graphical representation (symbol) is provided.

These building blocks are covered in detail in the following subsections.

Familiarizing ourselves with UML notation 63

Things

Things are core entities that have the goal of abstracting concepts represented by the
system. Things are further grouped into other subtypes, as outlined here:

Structural things: These are the most essential elements in object-oriented
programming (such as classes and interfaces)

Behavioral things: These represent interactions (such as messages and actions)
Grouping things: These are used to organize other things (packages are an example)

Annotational things: These support elements to document the models (such as notes)

Relationships

Relationships model the links between things. These are further organized into four main
categories, as follows:

Dependencies: Defining a relationship in which the changes made to a thing will
influence a dependent thing. Also referred to as a client-supplier link, where a
change to the supplier requires a change to the client. As an example, think about

a BusinessLogic component, providing validations, checks, and so on, and a
PaymentService component, called from the BusinessLogic component

in order to provide payment functionalities. A change in the methods of the
PaymentService component will require a change in the BackendAPI that uses it.

Associations: An association, such as a link between classes, is usually modeled as one
object holding a reference to one or more instances of the other objects. An example
of this is a Payment Transaction component with a user. Each payment must
reference at least one user of the platform (that is, the one making the payment).

Generalizations: This represents the parent-child relationship. That's
pretty straightforward: a MobilePayment interface is a specific type of
PaymentTransaction component, inheriting from it.

Realization: This helps in modeling the interface-implementation link, representing
a contract in terms of methods and signatures, and the realization of it. You can take
as an example an IPaymentService interface, and its practical implementation—
such as MobilePayment —implementing one particular way of making a payment
(and abstracting the caller from the implementation details).

64 Common Architecture Design Techniques

Diagrams

Diagrams are schemas representing meaningful sets of things. They are technically
graphs, which helps them to be easily read and written by machines. Diagrams can be
classified as follows:

o Structural: Describing the static aspects of a system, such as the structure,
grouping, and hierarchy of objects

« Behavioral: Describing the interactions between objects

Diagrams are the most widely known concept of UML. It is very likely that you have
already seen a class diagram or a sequence one. In my opinion, diagrams are one of the
most useful UML concepts. For this reason, we will walk through the main types of
diagrams in the following upcoming sections.

In the following diagram, you can see a graphical representation of the UML things we've
just seen:

| MyClass | <<Interface=>

ield: Mylnterface
* fleld: ype d MyMessage*
+ method(type): type + field1: Type

+ method1(Type): Type

1 MyNote
MyAction MyPackage

Figure 3.1 - Graphical representation of some UML things

In the next diagram, we represent the graphical symbols of the UML relationships
we've described:

—————>

Dependency Association

—> ----->

Generalization Realization

Figure 3.2 — Graphical representation of some UML relationships

Familiarizing ourselves with UML notation 65

With regard to UML diagrams, due to their relevance, we will walk through some of the
most common ones in the next sections.

Class diagrams

Since the beginning of this section, we've made it clear that UML is all about object-
oriented modeling, which is expected since Java (probably the most widespread object-
oriented language) is one of the pillars of this book, and—of course—modeling classes

are one of the most important aspects of object-oriented modeling. I'm pretty sure

you've already seen (or used) class diagrams. They're a very common and natural way to
represent classes and how they are made, and indeed are used in countless documentation
on the internet.

A class diagram is made up of a set of classes (including their fields and methods) and
the relationships between them. Interfaces are represented where present, and so is
inheritance between classes. As per the other diagrams, a class diagram is conceptually
a graph, made up of arcs and vertices.

A class diagram is intended to highlight a specific subset of the whole architecture, so the
class represented is part of a given use case or belongs to a specific subdomain.

It's worth noticing that the relationships will represent both the kind of cooperation/
responsibility between the classes and the multiplicity of the relationship itself (for
example, one-to-many, one-to-one, and similar cardinalities). This is what a basic class
diagram looks like:

<<Interface>> Class RelatedClass
Interface
-——— 'I> + field: Type 1 * .
+ InterfaceField: Type Y —o + field: Type
+ method(): Type .
+ interfaceMethod(): 0:Typ + method(): Type
SubClass

+ otherField: Type

i+ otherMethod()

Figure 3.3 - Basic class diagram

As you can see, a class diagram is a great way to model the structure of a logical
subdomain of the application (objects and their links). In the next section, we will look at
sequence diagrams, which are another very widespread representation, focusing more on
the end-to-end interactions needed to implement the functionality.

66 Common Architecture Design Techniques

Sequence diagram

A sequence diagram is probably one of the most famous UML diagrams. This diagram is
a particular instance of so-called interaction diagrams, which are a representation of a set
of objects (such as software components and actors) and how they interact (for example,
exchanging messages). In the case of sequence diagrams, the interaction is pictured in a
linear way, representing interactions ordered by the temporal dimension.

From a graphical viewpoint, a sequence diagram pictures objects in a row, each one with a
line going down vertically (also known as a lifeline). Crossing those lifelines, interactions
are laid out as horizontal lines, intersecting the involved objects.

A sequence diagram also offers a way to represent conditions and iterations. Conditions,
parallelization, loops, and optional are represented by drawing a box around the
interactions and tagging the box with the right keyword.

Given the nice level of detail that can be expressed by the message flow (including the
time ordering) and the expressiveness provided by the structured controls (conditions and
such), sequence diagrams are a very nice way to analyze and document functionalities, by
breaking them up into smaller operations.

This is what a sequence diagram looks like:

[:User] { :Component] :Component

message

IOOD) message |
return
(, ,,,,,,,,,,,,,,,,,,,,,
message —Self M
return ‘J
G L]
o 1
1
message |
return

Figure 3.4 - Sequence diagram

Exploring ArchiMate 67

As you can see in the first row of the diagram, we have in this case a user and two
components, whereby the following applies:

« Each one of them has a lifeline, which is highlighted to represent activation when
an interaction is made (for example, a method is called, or a message is sent).

+ A self-message is pictured as a curved line, representing the call of a method on the
same component.

« Aloop is represented as a frame with a tag. In the tag, other than loops, opt
(optional), par (parallel), and alt (conditional) are admitted values. opt
identifies an optional interaction that will happen only if a specified condition
is met (such as an if block), par represents a parallel interaction (such as two
methods called in parallel in a multithread fashion), and alt matches alternative
conditions, such as an i f/else block.

« The same kind of notation (box with a tag) can be used to represent sub diagrams.
In this case, the tag has a ref value, while the name of the diagram representing
that part is reported in the box. This provides a simple way of breaking down big
and complex sequence diagrams into smaller ones.

With this look at sequence diagrams, we have completed our very brief overview of the
most common UML ideas.

Wrapping up on UML

As we said at the very beginning of this section, UML is a big and complete framework
that is too complex to summarize in just a few pages. However, the essential concepts
we have seen so far (including class diagrams and sequence diagrams) are a good way to
start getting used to this language and add some useful tools to your toolbox. Of course,
my advice is to go deeper and get to know more diagrams and techniques from this
awesome language.

In the next section, we are going to explore a technique that shares many similarities with
UML: ArchiMate.

Exploring ArchiMate

ArchiMate is an architectural modeling technique aimed at analyzing and documenting
enterprise architectures. This means that, while still having roots in technology and software,
it's usually adopted in projects with a broader scope, such as documenting the whole
enterprise technology landscape (also known as enterprise architecture) and modeling

the business processes implemented by the underlying technology implementation.

68 Common Architecture Design Techniques

ArchiMate's name is a merging of architecture and animate, implying that one goal of

this framework is to display the enterprise architecture in an intuitive way. ArchiMate

was created in the early 2000s in the Netherlands, the result of a concerted effort from
players in the government, industry, and academic sectors. Soon after the first drafts of this
standard, the governance was transferred to The Open Group, an industry consortium
regulating many other IT standards, such as The Open Group Architectural Framework
(TOGAF, which is an enterprise architecture standard) and the Single Unix Specification
(SUS, which is a Portable Operating System Interface (POSIX)-standard superset). The
Open Group is also behind other famous standards in the Java world, such as Service
Oriented Architecture (SOA) and eXtended Architecture (XA).

Let's start with the ArchiMate Core Framework.

The ArchiMate Core and Full Frameworks

The first concept to approach in ArchiMate is the Core Framework. The ArchiMate Core
Framework is a 3x3 matrix, created by crossing three layers (Business, Application,

and Technology) stacked with three aspects (represented vertically: Passive Structure,
Behavior, and Active Structure).

This is what the Core Framework matrix looks like:

Passive Behavior Active
Structure Structure

Business
%]
14

Application E
<
-

Technology

ASPECTS

Figure 3.5 — ArchiMate Core Framework

Exploring ArchiMate 69

The layers are a way to look at the same concept (or closely related concepts) from
three different perspectives. In a way, a concept in one layer makes use of or is linked to
concepts in nearby layers. You can see the three layers as a specification from the more
abstract (business) to the more concrete (technology), as outlined here:

« The Business layer revolves around business capabilities, usually offered to the
external world (for example, final customers). This includes business processes,
events, and functions related to high-level capabilities.

« The Application layer includes the software components offering capabilities to the
Business layer.

+ The Technology layer is the technical infrastructure supporting the software
components, including hardware and communication.

The aspects are a way to classify objects by their role in an activity, as outlined here:

 Active Structure includes the elements starting an action (including actors, devices,
and software components).

 Behavior includes the action itself being made by something in the Active
Structure aspect (such as an actor).

« Passive Structure includes the objects on which the activity is made (for instance,
the recipient of the action itself, such as a data object).

You should take into account the fact that some objects can be part of more than one aspect.

As you will see, the Core Framework provides a simple way to place and categorize objects,
and it enables multiple viewpoints. Also, take into account that ArchiMate diagrams do
not necessarily follow this matrix layout: this is merely a conceptual way to demonstrate
layers and aspects and how they are related.

The ArchiMate standard also provides an extended version of the framework. In this
framework, three more layers are added, as outlined here:

« Strategy, on top of the Business layer, aims to link business functionalities and use
cases to the pursuit of strategic objectives.

 Physical, technically a subset of the Technology layer, is used to represent materials,
physical objects, facilities, and so on.

« Implementation and Migration is used to model all the temporary components
supporting transitory phases during implementation and migration.

70 Common Architecture Design Techniques

A fourth aspect, called Motivation, is also included in the extended framework. The goal
of this aspect is to map and represent the strategic reasons behind the other architectural
choices. In particular, you will see components such as value, goal, and stakeholders used
to model the reason behind specific domains or use cases.

This is what the Full Framework looks like:

Passive Behavior Active Motivation
Structure Structure

Strategy

Business

Application

LAYERS

Technology

Physical

Implementation
& Migration

ASPECTS

Figure 3.6 — ArchiMate Full Framework

As per the Core Framework, this is just a logical model aimed to highlight areas of overlap
between the layers and aspects. ArchiMate-compliant schemas will not necessarily come
in a matrix format.

In the next section, we will see the components of ArchiMate, which are the objects
categorized according to the matrices we've just seen.

Navigating the ArchiMate language tree

The ArchiMate language is conceptually structured as a tree, as follows:

o The top concept is the model, defined as a collection of concepts.

« A concept is a generic term that can be characterized as an element or a relationship.

Exploring ArchiMate 71

« An element is a generic item that maps to a definition of the layers—that is,
Behavior, Active Structure, or Passive Structure. An element is also allowed as
part of the Motivation aspect (as per the Full Framework). Composite elements
are intended as aggregations of other concepts. Active Structure and Behavior
elements can further be classified as Internal or External. An event is a further
specialization of a Behavior element.

A relationship represents the connection between two or more concepts.
Relationships are further classified as Structural (elements are statically associated
to create another element), Dependency (elements may be affected by changes
in other elements), Dynamic (elements have temporal dependencies to other
elements), or Other.

 Relationship connectors are logical junctions (And, Or), associating relationships
of the same type.

This is what the tree will look like:

Model

Concept

Relationship
-
Connector

= Element Relationship

Behavior

ﬁ S(ructurall ﬂ And I
Extemall ﬁDependencyl q_l
Or

Internal I Dynamic |

Other I

1T

Event I

Structure

Active

Passive

Iaglj

Figure 3.7 — ArchiMate language tree

72 Common Architecture Design Techniques

In this classification, elements are just defined in an abstract way, not dependent on layers.
In ArchiMate modeling, concrete implementations of those elements are then instantiated
and classified in the relevant layer. As an example, a service is a generic internal Behavior
element. It will then be used in the form of a business service, application service, or
technology service, depending on which layer we are modeling.

Other elements only make sense in a specific layer. For example, a communication network
is an element property of the Technology layer, classified as an Active Structure element
that doesn't have a one-to-one correspondence to elements present in other layers.

The combination of elements and relationships can then be organized into custom views,
effectively building architectural diagrams, optimized by stakeholders and viewpoints.

In the next section, we are going to compare ArchiMate with UML.

Comparing ArchiMate to UML

As you may have seen, the ArchiMate language shows some similarities to UML. That
is not by accident: ArchiMate is indeed inspired by UML, and some concepts of the
two frameworks are almost the same.

However, other than specific differences (for instance, concepts present in one framework
and not in the other), there are some high-level considerations to take into account when
comparing those two frameworks, as outlined here:

o UML is strictly centered around object-oriented modeling, while ArchiMate is not
linked to a specific paradigm.

 ArchiMate explicitly defines the Business layer and other higher-level concepts
(including Motivation and Strategy) that are usually not contemplated in
UML diagrams.

o UML provides a fixed set of diagrams, while ArchiMate is more of a palette
of different components and aspects, aimed at building views and viewpoints,
explicitly providing ways of customizing the architecture definition.

As we saw when we covered the ArchiMate genesis at the beginning of this section,
The Open Group is the organization behind many other standards, including TOGAE
Let's see what the relationship between ArchiMate and TOGAF is.

Introducing the C4 model 73

Comparing ArchiMate to TOGAF

TOGAF is a complete framework, aimed at providing a standardized way of defining,
modeling, and implementing architecture projects (for example, classifying the enterprise
architecture of an organization). TOGAF is, in a way, complementary to ArchiMate. While
TOGATF does not provide a specific architectural notation (as ArchiMate does), ArchiMate
does not prescribe a specific process for architecture definition (as TOGAF does).

The core of TOGATF is the Architecture Development Method (ADM) process. The
process is made up of eight steps (plus two special phases: the preliminary phase and
requirements collection). A detailed explanation of each step is beyond the scope of

this book, but the important takeaway is that each phase of the TOGAF ADM can be
mapped as a layer into the ArchiMate framework (for instance, Phase B, which is about
the definition of business architecture, of course maps to the Business layer, while Phase F,
Migration Planning, can be mapped to the Implementation and Migration layer).

This concludes the section dedicated to ArchiMate. In the next section, we will go through
another very smart architectural modeling technique: the C4 model.

Introducing the C4 model

The C4 model is a lightweight methodology for modeling and representing software
architecture. It was created in 2006 by Simon Brown, and the official website (under a
Creative Commons (CC) License) was launched in 2018.

The model is somewhat inspired by UML, but it takes an alternative, leaner approach and,
for this reason, is very popular among Agile teams who are looking for a more dynamic
and less prescriptive way of designing and documenting software architectures.

Exploring the C4 model

The keyword for understanding the C4 model is zoom. This concept means exactly
what it does for pictures: the core idea of the C4 model, indeed, is about navigating the
architectural representation by widening or narrowing the point of view. The C4 model
is built around four main levels, detailed as follows:

« Context is a diagram giving the big picture of an application. It shows the whole
system represented as a box and depicts interactions with users and other systems.

+ Container is the view obtained when zooming in one level down. It represents
what's inside the system box by modeling the subsystems comprising it. In terms of
granularity, a container is something that can be deployed and executed—so, it can
represent a backend application, a database, a filesystem, and so on.

74 Common Architecture Design Techniques

« Component is another zoom level, looking inside one container. In essence,
a component is an abstraction grouping of a set of code instances (for example,
a bunch of classes) that implement a functionality.

« Code is the maximum level of zoom in this hierarchy and can be omitted. It's used to
directly represent source code and configurations. The C4 model does not provide a
specific suggestion on how to draw this kind of schema, which is usually represented
using UML class diagrams. The reason why it's considered optional is that it is not
very easy to keep this view up to date with code changes. A suggestion here is to try
to stick to the automatic generation of this diagram if possible (by using plugins for
the integrated development environments or other automated procedures).

So, the C4 model, in essence, is made up of three different diagrams (plus an optional
one). Each diagram is linked to the others by a different level of zoom, as shown in the
following diagram:

System :
[Software System] il

Description

System System
Software System] [ll[Software System]

Sof ase
- - - -
mal System |l External System
[Software System] [l Software System)
Description Description

Description

System em
[Software System] [l (Software System]

: Description Description OO

R ey \ (/)
: System :

: [Software System] Database :
: ontainer: Technolog :
: Description e :

External System External System
H [Software System] Il [Software System]
: Description Description

Syste

—— =

Classname

-+ field: type

[+ method(type): type

Classname Classname
fr——
-+ field: type + feld: type
-+ method(type): type R wpe

|+ method(type): type field: type
| fied: type

A

Context éContaineréComponenté Code

Figure 3.8 — C4 zoom levels

The idea behind this technique is to focus on a different ecosystem based on the level of
zoom. Moreover, different views can be aimed at different stakeholders. In the next section,
we will see what's inside each level.

Introducing the C4 model 75

Filling in the different levels

The C4 model does not provide any particular notation or symbology. Unlike UML, the
kind of shapes, color coding, and so on are not part of the standard. The model simply
encourages you to have a consistent representation (for example, once you choose a shape
to represent an element, keep that shape in all the diagrams), to add an explicit legend

to each diagram, and to comment as much as possible, for better clarity.

C4 is made up of the following elements:

« Software system: The top-level element, the center of the context representation.
This is basically the whole system that we are going to design and implement.

« Container: As we mentioned when discussing the level with the same name,
a container is roughly something that can be deployed and started/stopped
individually. This includes applications, databases, and so on. It's usually completed
with a description of the technology and framework used.

« Component: As before, this is a concept already introduced when discussing levels.
A component is an abstraction aggregated over a subdomain or functionality. It's
basically a grouping of code. It may or may not map one-to-one to a Java package.

+ Relationship: A line (or, more often, an arrow) representing a link between one of
the aforementioned elements. It's usually completed with a textual explanation of
the kind/scope/goal of the relationship, and technical details where relevant (for
instance, the protocol used).

+ Person: A human interacting with the system.

As you will see, there is no explicit advice for representing the code. It's a common
practice to represent it with UML classes but, as we said before, this is something that
is only done if strictly necessary.

For the sake of completeness, C4 also includes some additional diagrams, as outlined here:

+ System landscape: A context diagram showing the whole enterprise, in order to
represent the full neighborhood of our application.

« Dynamic: A diagram representing a use case by numbering the interactions
between elements in order to show the temporal progression. It looks quite similar
to the UML sequence diagram but is less prescriptive in terms of syntax.

« Deployment: This shows the mapping between containers and the underlying
infrastructure, which may be a physical server, a virtual machine, a Linux container,
and so on.

76 ~ Common Architecture Design Techniques

With these diagrams, we have completed our excursus on the C4 model. As you will see,
this model is simpler than UML and ArchiMate but still quite complete and expressive,
meaning that you can model a lot of architecture types with it.

In the next section, we are going to explore other modeling techniques that are less
common and aimed at specific use cases.

Other modeling techniques

The three modeling systems we have seen so far—UML, ArchiMate, and C4—are
complete systems with different approaches, aimed at analyzing and representing
software architecture end to end.

In this section, we are going to quickly touch on some other techniques that have a more
vertical approach, meaning that they are less general-purpose and more detailed when it
comes to targeting specific use cases. Those techniques are Business Process Model and
Notation (BPMN), Decision Model and Notation (DMN), and arc42.

BPMN

BPMN is a standard that was developed and is currently maintained by the Object
Management Group (OMG), the same organization behind UML. BPMN is also a standard
that has been recognized by the International Organization for Standardization (ISO).

As may be obvious by its name, this language specializes in representing business processes.

BPMN is usually associated with the activity diagram of UML, as both are flow

chart-like diagrams (with a slightly different notation and symbology), aimed at describing
a use case in terms of elementary steps and the connections between them (for instance,
optional conditions), including a temporal dimension (from-to). But the similarities

end there.

UML is wider and aimed at modeling a lot of other things, rather than being
fundamentally an object-oriented framework. On the other hand, BPMN focuses just on
the modeling of business processes, and its primary goal is to define common ground
between technical and business stakeholders. Indeed, the idea behind BPMN is that a
businessperson (or better, someone with no technical skills but a good knowledge of
processes) can model a diagram that can then be directly imported and executed into

a BPMN engine, with little-to-no help from technical staff. This is not something that
happens in the real world, as often, BPMN design is still an abstraction, and a number
of technical steps are still needed to configure, deploy, and execute a BPMN process.

Other modeling techniques 77

However, it's true that BPMN is usually at least understandable (if not definable from
scratch) by non-technical stakeholders. This is good enough for supporting collaboration
between teams and reducing friction when translating business processes into code
implementation.

The building blocks of BPMN are categorized as four basic families: flow objects,
connecting objects, swimlanes, and artifacts. For each of them, a graphical notation
is formalized.

Roughly speaking, flow objects represent the steps in the diagram and are described in
more detail here:

 The most important one is probably the task, which is the abstraction of generic
activity. This means both non-automatic activities (manually performed outside
of the BPMN platform) and automatic activities (such as sending an email or
triggering a web service call).

 Other basic flow objects are start and end events, delimiting the beginning and end
of a workflow.

« Gateways are another important kind of object, used to model things such as
conditional execution or the parallelization of paths.

Connecting objects are used to link flow objects with one another. They can mimic
different behaviors, such as sequences, messages, or associations.

Swimlanes are a way to graphically group and organize a business process. With
swimlanes, you partition the business process according to the actor (or group of actors)
in charge of a specific set of steps.

Finally, artifacts are supporting concepts (for example, annotations), aimed at enriching
the BPMN flow expressiveness.

78 Common Architecture Design Techniques

This is what all these objects look like graphically:

O . —
Start Event . Sequence
i Flow
End Event - -
. Lane) .
Parallel Gateway M?:sl‘gfvge . : _I:
Exclusive Gateway * N . . Annotation
. Association . .

Flow EConnec’[ingE . -
Objects Objects :SW|mIanes: Artifacts

Figure 3.9 - Graphical representation of some BPMN entities

We will talk again about BPMN in Chapter 7, Exploring Middleware and Frameworks.

DMN

DMN is a standard published and maintained by OMG, and it's younger than BPMN.
DMN is somewhat complementary to BPMN. Instead of being aimed at modeling business
processes, the scope of DMN is to model business rules, which are commonly used as one
of the tasks in BPMN processes, rather than standalone, outside of BPMN processes.

The goal is exactly the same as BPMN: defining a common language between business and
IT personas, allowing for better collaboration.

DMN encompasses elements such as decision tables (tables representing rule outcome
based on the combination of a set of inputs) and Friendly Enough Expression Language
(FEEL), an expression language used to formalize the logic behind decisions.

We will talk about DMN again in Chapter 7, Exploring Middleware and Frameworks.

arc42

arc42 is not a modeling technique but, instead, a templating model that helps with
identifying, in software architecture, what the important concepts to document are and
how to document them, by providing a kind of scaffold.

Case studies and examples 79

arc42 was originally created by Dr. Peter Hruschka and Dr. Gernot Starke and has a
completely open source approach (including being free to use in commercial projects). It's
an exceptional way to start documenting your system from scratch, from an architectural
point of view. From a practical viewpoint, it provides a scaffold (including sections to be
fulfilled) on what the documentation should look like.

It is not a substitute for other modeling languages and does not mandate a specific
working model or development techniques. Instead, it is expected that you will use
concepts and diagrams from other techniques (such as UML or C4) to fill out the sections
of arc42-compliant documentation.

Sections include elements such as the introduction, runtime view, cross-cutting concepts,
architectural decisions, and more. It is really just a suggestion on the structure of the
documentation; it's up to you to choose how deep to dive into each section. If you want to
give it a try, you can go to the official website (see the Further reading section), download a
template, and start to fill out the sections. It really is that easy.

BPMN, DMN, and arc42 cover specific niches and target specific needs. For this reason,
they can be a useful complement to the more generic and comprehensive frameworks
that we have seen before. With this section, we've completed our overview of architectural
modeling techniques. Let's now complete this chapter by looking at some examples.

Case studies and examples

In this chapter, as in previous ones, we will continue our study of the mobile payments
application. We will keep exploring this context to see some examples of the diagrams we
have discussed so far.

UML class diagrams for mobile payments

As a first example, we will look at UML class modeling. This is a very common diagram in
Java projects. It is debated whether it's useful to build and maintain documentation that

is so close to code (see also the considerations we discussed in the section on C4), since

it may be seen as not adding that much value and being hard to maintain. Moreover, in
modern development models (such as cloud-native and microservices), you are supposed
to communicate between parts of the application by using established interfaces (such as
REpresentational State Transfer (REST) or Google Remote Procedure Call (gRPC) and
avoid exposing the internal model of your applications for others to tap into.

80 Common Architecture Design Techniques

My personal view is that the truth is in the middle. Unless you are developing something
very peculiar (such as a framework, a library, or a plugin extension system), you may not
need to document your entire code base as class diagrams. However, in order to analyze
impacts and collaborate with other team members on the same code base, it may be
worthwhile to at least sketch the critical aspects of your application (this being the core
classes and interfaces).

Another useful technique is to rely on the automatic generation of class diagrams. You
may find plugins for most commonly used IDEs and also for Maven that can do that

for you. Class diagrams can be particularly useful for giving an idea of what the model
behind your code looks like (think about a new team member joining the project) and
can ease things such as refactoring by giving an idea of what impact a change could have
on related classes.

This is what a class diagram for mobile payments will look like (picking just a handful of
significant classes):

Payment <<Interface>>
Auditabl
+id: UUID uditable
+date: Timestamp | > + date: Timestamp
+ currency: String
+ sender: User + verifySignature(): String

+ recipient: User
+ signature: String
+ amount: float

+ getld(): UUID User
+ getDate(): Timestamp N 1 +id: UUID
+ verifySignature(): String)

+ creationDate: Timestamp
+ address: String

+ profile: Profile

+ device: List<Device>

+ username: String

MobilePayment

+getld(): UUID

+ deviceld: String + getCreationDate(): Timestamp

+ getDeviceld(): String

Figure 3.10 - UML class diagram for payment and user objects

As you can see in the preceding diagram, we are representing the Payment and User
classes (some methods and fields are omitted for the sake of space).

Some of the notations we used in this diagram are listed as follows:

+ MobilePayment isa subclass of Payment (generalization).

o Payment implements the Auditable interface.

Case studies and examples 81

« Payment is associated with User.

 You can also see the multiplicity (each user can have n payments). As we discussed
before, this kind of association is very similar to what you can find in an entity
relationship diagram representing database tables.

In the next section, we will see some C4 diagrams for mobile payments.

C4 diagrams for mobile payments

In the section dedicated to C4 diagrams, we saw that the C4 technique involves
diagramming the system according to four main levels of zoom. As discussed, the last level
of zoom (code) is optional, and there are no strict guidelines given on how to represent it.
It is common to use class diagrams, as we did in the previous section. Supposing we take
that as one of the four representations for our use case, let's see what the path is that takes
us to that schematization. Let's start with the context diagram of a module of the mobile
payments solution, as follows:

Payment System User
[Person]
Participant in the payment
system

iAccess to
; Store and
\4 retrieve
Mobile Payment payments
Application [https/ xml] Transactional Backend

[Software System]
Provide transactions and
balance services

[Software System]

Provide the mobile
payment functionalities

Store and retrieve b A :
Store and retrieve

user profile :
[https/ json] tran_sactlon
history
[sall

CRM
[SAAS]
Provide and receive

Reporting and
Data Warehousing
[Software System]

Make calculations over
transaction data

customer profile
information

Figure 3.11 - C4 context diagram

82 Common Architecture Design Techniques

As we can see, this is very high-level, aimed at showing the ecosystem of interactions
around our system. The mobile payment application is just a big block, and in the diagram,
we summarize the external system and the actors interacting with it. There is also a
synthetic description of the interactions (including the format/protocol) and the type of
each element (software system, person).

Let's now zoom into the container view, as follows:

Payment System User
[Person]
Participant in the payment
system

{Access fo

Mobile Application
[Software System]

Caching and Sessions
[In Memory Cache]

Store volatile information
related to the business
logic

Provide the mobile
payment functionalities

| Expose functionalities

Reads and writes to § [https/JSON]
[rest]
Store and
retrieve
Business Logic Payments
Database [Software System] [https/ xml] Transactional Backend

Implement the business System]

logic workflows of the
Store persistent Reads and writes to payment use cases

informations related to the [sql]

business logic

[Container: SQL Database]

Provide transactions and
balance services

: Mobile Payment Application
S S——— i___[Software System]

Store and retrieve :
i Store and retrieve

transaction
history i user profile
[sql] i [https/ json]

Reporting and
Data Warehousing
[Software System]

CRM
[SAAS]
Provide and receive

Make calculations over
transaction data customer profile

information

Figure 3.12 - C4 component diagram

Case studies and examples 83

Here, we can see a closer representation of the technical pieces comprising our application.
Our application is no longer just a box: we can see all the processes (things that can

be deployed and started independently from one another) that comprise our system
included in the dashed box. External context is still present (for example, the transactional
backend). Every interaction has some explanation and protocol. Every container has a
generic description of the kind of technology that is implementing it. If you think this
diagram is pretty similar to what we saw in Chapter 1, Designing Software Architectures in
Java — Methods and Styles, you are right.

We are still a bit far from the code/class diagram. The component diagram is the missing
link. We can view this here:

Mobile Application

[Software System]

Provide the mobile
payment functionalities

§ Expose functionalities

i [https/JSON]

Mobile Application
Backend
[component: Camel]

Caching and Sessions
[In Memory Cache]

Store volatile information
related to the business

Implement BFF pattern

Provide transactions and
balance services

logic Data Mapper Store
H [component: Wildfly] and
Reads and writes to : Integration retrieve
fresy e g Manage data model [component: Camel] ayments
; pay , Transactional Backend
! Reads and writes to Integrate external and |8 ,,,L"I‘HE-}!“,U,,,,) [Software System]

sall legacy systems

Store and retrieve Business Logic
transaction history
sall Database

T — [Container: SQL Database]

Store and retrieve

user profile
[https/ json]

Store persistent information
related to the business
logic

CRM
[SAAS]

Reporting and

Data Warehousing Provide and receive

customer profile
information

[Software System]
Make calculations over
transaction data

Figure 3.13 — C4 container diagram

As expected, we zoomed in one level deeper, highlighting three components that comprise
the business logic container (Mobile Application Backend, Data Mapper, and Integration).

With this container diagram, we are one step above the direct representation of the
implementation code (code diagram).

For the sake of space, we are not providing the full code diagram here. However, the
classes modeled as UML in the section before can be seen as a partial code diagram
of the Data Mapper component, somewhat closing the loop.

84 Common Architecture Design Techniques

Those were very basic examples to show some bits of the modeling techniques in practice.
Of course, giving detailed examples on every methodology shown in this chapter would
have taken a whole book (or more than one) on its own, but I hope to have given you
some basics to start from and deep dive into, in case you need to start practicing one of
these diagrams for your projects. Let's now recap the main points of this chapter.

Summary

In this chapter, we saw a wide range of techniques for modeling and representing the
internal architecture of a software system. We started with UML, which is a consolidated
standard that is very widespread and actively used, especially in some of its aspects, such
as class diagrams and sequence diagrams.

We then moved on to ArchiMate, which gives an enterprise architecture point of view on
the subject and is commonly used in a context that follows the TOGAF approach. We then
moved on to the C4 approach, which is a younger standard that is very lightweight and
particularly suitable for projects adopting lean methodologies.

We've also seen a handful of specialized languages (BPMN and DMN), which are perfect
for modeling specific aspects of our application. Last but not least, we quickly touched on
arc42, which is a wonderful template system to start your architecture documentation and
ensure that nothing important is missing.

In the next chapter, we will discuss Domain Driven Design (DDD) and other techniques
to flesh out your application, which you can use once you have defined the architecture
for it.

Further reading
o The UML official website: http://uml.org/

o The Unified Modeling Language User Guide, by Grady Booch, James Rumbaugh,
and Ivar Jacobson, published by Addison-Wesley, 1999.

« The Open Group, ArchiMate® 3.1 Specification: https://pubs.opengroup.
org/architecture/archimate3-doc/

o InfoQ, The C4 Model for Software Architecture: https://www.infoq.com/
articles/C4-architecture-model/

o The C4 official website: https://c4model . com/
o The arc42 official website: https://arc42.org/

4

Best Practices
for Design and
Development

The developers reading this book have probably viewed the previous chapters as
appetizers. If that's the case, with this chapter, we are moving on to the main course.
While collecting requirements and designing the architecture are crucial steps (I cannot
highlight this enough), anyone who comes from a development background will surely
want to get their hands dirty with code.

In this chapter, we will focus on how to implement the concepts that we have theorized

so far in the source code. Of course, in the real world, the edges are not so smooth, and
the architectural design (including UML or C4 schemas) and requirements management
will continue during the implementation phase. However, in this chapter, we will focus on
some well-known techniques to translate those design ideas into working software.

86 Best Practices for Design and Development

In this chapter, you will learn about the following topics:

« Understanding Domain Driven Design (DDD)

« Introducing Test Driven Development (TDD)

« Exploring Behavior Driven Development (BDD)
« User story mapping and value slicing

+ Case studies and examples

After reading this chapter, you will be able to model complex use cases into elegant
software concepts and define domains, objects, and patterns. You will learn how to use
TDD and BDD to conduct development activities and implement meaningful use cases
with each release. You will understand the concept of Minimum Viable Products (MVPs)
and the technique of value slicing.

But first, we'll start with DDD, which will provide a solid foundation to build upon.

Understanding Domain Driven Design

DDD takes its name from the book of the same name by Eric Evans (2003). The subtitle
beautifully clarifies what the goal is—Tackling complexity in the heart of software.

In this section, we will learn about the domain model, ubiquitous language, layered
architecture, DDD patterns, and bounded contexts.

DDD is a widely adopted modeling technique to build rich and expressive domains. It is
considered to be behind modern approaches such as microservices development.

The idea behind DDD is discovering how to model our software in a way that mirrors
the problem we are facing in the real world. It is expected that if properly modeled, our
software will be readable, will adhere to requirements, and will work properly.

Of course, there is no magic recipe for that: DDD provides a toolkit of patterns, best
practices, and ideas to implement this modeling. This approach works particularly

well with complex domains, but it might be overkill for smaller and simpler projects.
Additionally, it is true that DDD provides a lot of good ideas, and you might consider
adopting it partially if that fits your needs. But first, let's begin with some considerations
about the completeness of the domain model.

Understanding Domain Driven Design 87

The anemic domain model

In his seminal paper about this domain model, Martin Fowler defines the anemic domain
model as an antipattern, which defies any basic purpose of object-oriented programming.
Of course, I cannot disagree with that at all. Nevertheless, this kind of modeling is far too
widespread, as it's a kind of quick and dirty way to design an application.

Essentially, in the anemic domain model, each object maps with its real-world
counterpart, including fields and relationships. Those are, in a way, kinds of data objects.
What's missing in the anemic domain model's objects is the behavior, meaning the specific
actions that are logically associated with that particular concept in the real world. Usually,
the objects in an anemic domain model have getter and setter methods, and not much
more. All of the behavior is codified as part of specific service objects, operating across all
of the other data objects through specific methods.

The issue, here, is that the domain model is simply slipping away from object-oriented
programming and toward an overengineered procedural model. This could be good
enough in simple scenarios and, indeed, is common in Create, Read, Update, and Delete
(CRUD) applications over a relational database, where you are, more or less, exposing
tables directly as an application, with very limited business logic on top.

If the model is bigger, and it encompasses more complete business logic, this way of
modeling starts to show some limits. The data objects become similar, and it's harder to
group them and define relationships. The service objects have more and more methods,
with growing complexity. You start to gain the cons of both the procedural and object-
oriented methods. After all, you have very few (if any) of the pros of object-oriented
modeling. DDD aims for the opposite—building rich and expressive object-oriented
designs. Let's examine how to start modeling applications on DDD principles.

Understanding ubiquitous language

Indeed, the very first concept of DDD is the principle of good collaboration. To define a
good domain model, you have to use both technical language and business language.

This means having a team composed of domain experts besides software developers.
But how will those kinds of people cooperate when they speak different languages? You will
require a lingua franca to ensure they work together.

88 Best Practices for Design and Development

The concept around the ubiquitous language is simple and brilliant, that is, to define a
shared dictionary for a business (for instance, analysts, domain experts, or whoever you
want to include) and developers to talk together with fewer misunderstandings. However,
it's a kind of abstract concept, and there is no magic recipe to achieve it. You can think
about it as a shared culture built into the team. Unfortunately, no one has defined a
template document or a kind of diagram that can solve the ubiquitous language challenge
for everybody.

Indeed, what's advised in DDD's essential literature is to use UML diagrams (especially
class diagrams) and written documents (no particular format is required). However,
what's essential is how you get to the shared understanding of ubiquitous language, and
there is probably only one way to do this—by working together.

Ubiquitous language is all about how to name the concepts in your model properly. And
by concepts, we are not necessarily referring to Java classes (as they are an implementation
detail), nor to business processes (as, perhaps, they are not mapped one to one in

our application). We are referring to something in the middle, that is, a model that is
understandable and makes sense for a business and is translatable in meaningful ways into
software artifacts by developers.

Of course, the model will comprehend objects, the relationships behind them, and the
actions they perform. It is also essential for the team to share the meanings of each
operation. Simply defining the name of each interaction might not solve any ambiguities.
Once a shared understanding has been reached (it might be a recurrent effort with many
cycles), then it must be strictly respected.

This includes using the naming consistently in code and in all of the other artifacts
produced (such as analysis documents, test plans, and more), as well as referring to things
with the right name in meetings and documenting this shared understanding in some
way (as I said, the format is up to you). As we discussed earlier, ubiquitous language is all
about creating a shared culture in a working team across different specialties.

The concept might appear abstract; nevertheless, it is essential and can be a useful tool
even if you are not fully going with DDD. However, DDD also defines more concrete
concepts, such as layered architecture, which we will look at in the next section.

Understanding Domain Driven Design 89

Getting familiar with layered architecture

When we start to define the conceptual model around our application, it's natural to
wonder where this model practically fits in our implementation and how to keep it pure,
regardless of the technology we are using. Think about persistence (the database), the
User Interface (UI), and such. Those technologies probably have constructs that differ
from our model. They might not even be object-oriented at all. And for sure, we don't
want a change driven by technological reasons (such as the optimization of a query or

a change in the UI) to affect our domain model. DDD tackles this concept directly by
suggesting a layered architecture approach.

Here, the idea is to partition the application code into different layers, loosely coupled to
each other. Then, you implement your domain model into one of those layers, encapsulating
the technological details in the other layers, each one with well-defined responsibilities.

A simple and common example of this is with the four layers divided, as follows:

Presentation Layer

Interacts with end user and other systems

Application Layer

Decouples and coordinates between presentation and other layers

Domain Layer

Business model (state and behavior)

Infrastructure Layer

The glue between other layer and underlying technology

Figure 4.1 - Layered architecture

90 Best Practices for Design and Development

As you can see, the layered architecture is divided as follows:

 Presentation Layer: This layer includes all of the code required to present and
collect the data for users. Additionally, this could include machine-to-machine
interactions (such as in API calls).

« Application Layer: This layer is similar to what's implemented in the Backends
for Frontends pattern (we'll cover this in Chapter 6, Exploring Essential Java
Architectural Patterns). Essentially, this layer is a proxy, stateless and without
business logic, which simply coordinates the interactions between the presentation
layer and the rest of the application.

The application layer can store session data and perform basic orchestration (such
as aggregating or ordering calls to the underlying layers). In my opinion, this layer
can be considered optional in some kinds of applications. The risk is that if you
avoid it, it will couple the presentation layer tightly to the rest of the architecture.
On the other hand, if you decide to adopt it, you should be mindful of the risk of
sneaking in too much business logic.

« Domain Layer: This layer is, of course, the core of proper DDD. Here lies the whole
business model, adherent to what we are representing, in terms of objects, their
state, and their behavior. The domain layer exposes the functionalities of the higher
levels and uses the underlying layer for technical matters.

o Infrastructure Layer: This layer is a supporting layer that deals with all of the
other layers. It can be defined as the glue between the layers themselves and the
technological layers providing functionalities. Here, a classic feature is persistence—
objects in the domain layer use features exposed by the infrastructure layer, which
deals with the database (or other persistent technology) using its native protocols
and libraries.

This organization might look familiar to you, as it's described in various forms and
variants in the software area (you might find some similarities with the Model-View-
Controller pattern, which we will examine in Chapter 6, Exploring Essential Java
Architectural Patterns). However, do take into account that this is mostly a way to nicely
group responsibilities. It doesn't necessarily mean that each layer should be deployed on
its own, as a separate process or artifact.

Having discussed layered architecture, let's focus on the heart of DDD: the Domain
Model and its parts.

Understanding Domain Driven Design 91

Learning about the domain model

The Domain Model is an elegant way to represent reality and implement it in an object-
oriented way.

Essentially, you can consider the domain model as the opposite of the anemic model that
we looked at earlier. In the anemic model, the objects simply include data and very limited
(or even absent) behavior. The domain model of DDD stresses the expressiveness of
objects and their behavior.

Put simply, the domain model is simply the concept of comprehending the data and
behavior of an application. DDD implements this idea by defining the elements detailed in
the following sections, as shown here:

Domain Model

Entity Service g -\
Has a strong Contains actions Aggregate
identity and a related to more Transactional boundary,
history throughout than one entity / containing Entities and Value
the application value object Objects composing together a
lifecycle bigger abstraction. Root enity
' is the entry point

Root

/ Entity N

Value Object —— -
Dataholder, _

N

strong identity Value
defined i
E3|en)

immutable. No

Figure 4.2 — The domain model

We will discuss each of the sections next.

Entities

The entity is a core concept of the domain model. Essentially, it is related to modeling
objects that have an identity and a history throughout the life cycle of our use case. The
keyword for defining an entity is identity.

92 Best Practices for Design and Development

If an object in our use case has a strong identity concept, it will probably map with
entities. A classic example is a person: in many use cases (including the mobile payments
example that we are carrying throughout this book), a person's identity is strongly
defined, regardless of the values contained in its representing objects. In other words, if I
have a person object, made up of the classic name, surname, and other details, having two
objects with the same name and surname does not necessarily mean I am referring to the
same person.

Indeed, I often resort to specific identifying fields (such as a tax code or something specific
to my application domain—perhaps an account number) to distinguish a person object
from another one. Moreover, the identity concept will still be valid even if the object

is persisted (and retrieved). In other words, if I persist (or passivate) an entity object
somewhere (such as in a database), it should be clear that it will refer to the same person
(in real life) when it's loaded again.

As is clear, defining an entity is a cross-cutting concern between a business and the
developers. It is much more than simply identifying a unique field distinguishing objects
from one another. Consider bank accounts: they are usually identified by a standard code
that is internationally recognized, at the very least, across Europe (IBAN code). However,
you might find that a bank account changes the associated IBAN code (such as when

a merger between different banks occurs). In this case, do the two IBAN codes refer to

the same account? Will the old account disappear and be replaced by a new one? Should I
instead use a third identifier (such as a UUID) to bridge between the two entities and bypass
the problem?

Usually, the answer is that it depends. In this scenario, it depends on the domain around
which your use case is modeled. The identity concept can also be different in the same
application (in an extended way). Ultimately, an entity object is very much related to the
point of view you are considering. However, for sure, it needs to be an object with a very
well-defined identity, regardless of the value of its attributes, which links us to a different
kind of object—value objects.

Value objects

Conceptually, value objects complement entity objects. Simply put, in a value object, the
data inside the fields of the object is more important than the object's identity. Value objects
simply transport information, and they can be shared, copied, and reused with ease. A
typical example of a value object is an address (such as a city, street name, or zip code). It
doesn't matter what the identity of each one is; what does matter is the data inside.

Understanding Domain Driven Design 93

Value objects should be immutable. Because they are immutable, they are simpler to use.
One common example is multithreading: multiple threads can access the same object
instance concurrently, and there is no need for locks, nor any risk of inconsistent value (as
the value cannot be changed). It's the same with passing object instances to methods: you
can be sure that whatever happens, the value of the object cannot be changed. Essentially,
with immutable objects, the life cycle is just easier to manage.

Value objects are usually lighter and safer to manage than entity objects. Additionally,
they can be part of an entity, that is, our person entity might have a link to an address
value object. However, you should balance the usage of entities and value objects. If you
only resort to value objects, you will probably fall into an anemic domain. There is still an
important thing to discuss regarding object content, that is, where can we put the behavior
that doesn't belong to either entities or value objects? The answer is services.

Services

As mentioned earlier, entities and value objects are different in terms of identity. Instead,
they share the grouping around a logical area, including data and behavior. In other
words, both entities and value objects contain data (class attributes), the methods for
manipulating it (getters and setters), and more sophisticated behavior (the business logic).

What's missing in this model is the cross-cutting behavior. Indeed, there are some actions
that don't feel right when placed in a particular object. That's because those actions
involve more than an object type, or they are simply ambiguous. It's important to not force
those actions into an unrelated object, as this will impact the expressiveness of the model.
Let's think about our mobile payment example again. Should we put the peer-to-peer
payment functionality in the sender or receiver account?

For all of these scenarios, you can define a service. A service explicitly maps actions that
are directly linked to the domain as a whole, rather than to a specific object type. In this
way, you can nicely group similar actions together without polluting entities or value
objects with behavior that doesn't belong there. It's all about keeping the domain model
rationally organized, which is also the goal of the next concept: the aggregate.

Aggregates

We mentioned the concept of aggregates in Chapter 2, Software Requirements — Collecting,
Documenting, Managing, when discussing event storming. It's worth saying that the

whole idea of event storming is strictly related to DDD and one of the ways to put DDD
into practice.

94 Best Practices for Design and Development

Let's return to the concept of aggregates; it's probably one of the most widely known ideas
of DDD, and it's also widely used outside of DDD. Put simply, aggregates can be seen as
transactional boundaries. The basic idea is to group a set of objects (that is, entities and/or
value objects) by data changes. The objects in an aggregate are considered as a whole when
it comes to changes to their internal status.

An aggregate has an entry point object, called a root entity. Any change to any object
part of the aggregate must be carried out through the root entity, which will then perform
changes on the linked entities. That's from a technical point of view rather than a domain
model point of view. What you are doing is invoking operations (or, even better, actions
that are as meaningful in the real world as in the domain model) in the root entity.

This will also mean changing the linked objects under the hood. However, this is an
implementation detail. From a logical standpoint, all of the interactions with objects in the
aggregate are mediated by the root entity. For this reason, the aggregate is a core concept
in DDD. It strictly maps the consistency of the model and can be easily translated into
technical concepts such as database transactions. Aggregates can then be seen as a sort of
super object made by the coordination of different objects. As such, the construction of
an aggregate can become complex. For this reason, DDD introduces the Factory pattern.

Glancing at DDD patterns

DDD encompasses some patterns to provide support functionalities for the domain
model, such as building and managing objects (such as entities and value objects). The
factory pattern is the first pattern that we will look at.

Factory

The factory pattern is not a new concept. You can refer to the Design Patterns book
by the Gang of Four, where this has been widely explained. Simply put, if you want
to programmatically control the creation of an object (or a set of objects such as an
aggregate), and not rely on the logic of a constructor, you can use the factory pattern.

Factory is particularly useful to instantiate an aggregate. By invoking the factory pattern
on the root element, you will coordinate the creation of the root itself and all of the other
objects linked to the root (entities and value objects). Additionally, you can enforce
transactionality on the creation of the objects.

Understanding Domain Driven Design 95

If the creation of one of the objects fails, then you might want to abort the creation of

the whole aggregate. The factory pattern can also be used to recreate objects from the
database. In this scenario, rather than an instantiation from scratch, it's a retrieval of the
existing root entity (and the linked subobjects). That's fine for addressing the retrieval of a
known object (given its identity), but how do you provide different kinds of lookups? DDD
suggests the usage of the Repository pattern.

Repository

A repository, in the DDD world, is a registry that is used to keep references to objects
already instantiated (or persisted on a database). Simply put, a repository can be used to
add, remove, and find objects. When used to find objects, typically, a repository acts as a
bridge between the domain and the infrastructure layer.

It helps to decouple the features and hide the implementation details of the persistence
layer. You can retrieve objects using complex or vendor-specific queries in the
infrastructure layer, and this is wrapped by an operation in the repository. It might

even be that the infrastructure layer retrieves objects in different ways, such as invoking
external web services rather than a database. Nothing will change from a repository point
of view. The services exposed by the repository must have an explicit domain meaning,
whereas the internal implementation might appear closer to the infrastructure logic.

So far, in all of the concepts that we have examined, we have implicitly assumed that
everything falls under one single domain model. Now, we will learn how to make different
domains interact with each other by using the concept of a Bounded Context.

Bounded Context

It is common to identify a domain model using one application. That's a hard way to
delimit the model boundaries. However, that's not always the case. When dealing with
large applications, it could be that different models need to coexist. This is because a
unified model is impractical (that is, too big or too complex), or because of the model's
conflict (that is, an object has different meanings, depending on the point of view and the
use cases touching it).

In those scenarios, you might need to define a border around each domain model. A
bounded context, then, is the area in which ubiquitous language is valid. If a bounded
context can be seen as a country, with defined borders, ubiquitous language is the official
(and only) language spoken of that country.

96 Best Practices for Design and Development

Usually, a bounded context belongs to one team, and it has some well-defined coordinates,
such as a portion of the code base and other subsets of related technologies (such as

a defined set of tables of the database). Two different bounded contexts cannot share
objects, nor call arbitrary methods of each other. The communication must follow well-
defined interfaces. In order to support the cooperation between two different bounded
contexts, a context map can be used.

A context map is a way to translate, when possible, concepts from one bounded context
to another. There are some patterns suggested by DDD to realize context maps. These
patterns include the following:

+ Shared kernel: This is when two bounded contexts share a subset of the domain
model. While this technique is easy and intuitive, it can be hard to maintain, since
the two teams managing the different bounded contexts must agree on any changes,
and in any case, the risk of breaking functionalities in the other context is always
present, so every change must be thoroughly tested (automatic is better).

« Customer supplier: This is similar, in a way, to the shared kernel approach, but the
relationship here is asymmetrical. One of the two bounded contexts (the supplier)
will own the interface, developing and maintaining the features, while the customer
will simply ask for what is needed. This simplifies the synchronization a bit between
the two teams. However, it can still create issues when priorities and milestones start
to clash.

» Conformity: This shares the customer-supplier type of relationship. The difference
here is that the customer domain model completely adopts and imports a subset of
the supplier domain model, as it did in the shared kernel approach. However, unlike
shared kernel, the relationship stays asymmetric. This means that the customer
cannot change (or ask for changes in) the shared model.

« Anti-corruption layer: This is a different approach. In this case, there is a translator
layer between the two domain objects. This layer acts as a demilitarized zone,
preventing objects and behaviors from sneaking from one bounded context to
another. This approach is commonly used when dealing with legacy applications,
more than when two bounded contexts belong to the same application.

It is worth noting that a proper DDD implementation is not easy to follow. There are
several common errors that could slip into a DDD architectural design. The first and
most common is the aforementioned anemic domain model, which is the most important
reason why you would want to adopt something like DDD. However, it's also common to
have some technology considerations slip into the domain model.

Introducing Test Driven Development 97

That's particularly true when it comes to the persistent layer. It is a common practice to
design the domain in a way that mimics the database tables and relationships (in this case,
we are using a relational database as a persistent backend). Last but not least, one common
error is to design the domain model without engaging with domain experts.

We could be tempted to design everything for the IT department, thinking we have a
proper understanding of the world we would like to represent. Even if this is partially
true, it's still worthwhile engaging with business experts, to better discuss the business
jargon (please refer to the Understanding ubiquitous language section) and rely on their
experience of the specific domain model.

This section concludes our brief overview of DDD. As we have learned, DDD provides
elegant ways in which to realize the ideas we have collected in the previous sections
(including requirements and architectural designs) and put them into code.

This starts with the concept of ubiquitous language, which we discussed at the beginning
of this section and is one of the big ideas of DDD, allowing common ground between all
the stakeholders involved in the application development.

Following this, we moved on to the core concepts of DDD, such as the application shape
(the layered architecture), the definition of objects and methods (the domain model and the
encompassed objects), and the recommended practices (patterns) regarding how to address
common concerns. A dedicated mention is needed for the concept of bounded contexts,
which is a way to structure big applications into more than one self-contained model.

As we will learn in Chapter 9, Designing Cloud-Native Architectures, DDD has some
common ideas with microservices architectures.

In the next section, we will look at another common practice to drive the implementation
of our design ideas—TDD.

Introducing Test Driven Development

TDD is a development technique based on a simple idea, that is, no code should exist
without test coverage.

In order to pursue this goal, TDD inverts our point of view. Instead of developing code,
and then writing a unit test to cover its testing, you should start writing a test case.

Of course, initially, the test case would intentionally fail while invocating empty or
incomplete functions. However, you will have a clear goal, that is, your piece of code is
complete when all tests are satisfied.

98 Best Practices for Design and Development

Starting from the end, you clearly define the boundaries of your software and the extent of
its functions. Then, you run the tests, which will all fail. You keep developing the features,
piece after piece, until all of the tests are satisfied. Finally, you move to the next piece of
code (or class or package)—it's that simple.

Remember that this approach doesn't necessarily guarantee any particular quality or
elegance in your code. Having a test pass does not imply that you are using good patterns
or efficient solutions. In theory, you might as well simply hardcode the expected results to
get a green light.

However, this technique will have a very useful byproduct, that is, you can't forget (or
purposefully avoid) to prove/test your code using test cases.

Anyway, there are several factors to take into account. First of all, some features might
require external systems to work. You can test the interaction of such systems, simulating
them with mocks, but of course, this will mean more code to write, more components (the
mocks themselves), and a further degree of approximation (meaning that your test will

be less representative of reality). Following this, you might need to test things that are less
easy to automate, such as Uls and interactions with devices (for example, mobile devices).
Yes, there are a number of solutions for this (such as automating browser navigation), but
this will complicate things.

Let me highlight that, even if this will require a significant amount of effort, tests cannot
be ditched. Testability is a crucial requirement, and it might also be a drive to rearchitect
your code base, increasing modularity and simplifying it, in order to improve testability.

Moreover, you might have dependencies between the features. This means coordinating
tests or, worse, having test results depend on the order in which they are running. Of
course, this is not easy to maintain and, in general, is not a good idea.

In this specific case, you might want to properly structure your tests, in order to provide
adequate setup and teardown phases, making everything simpler and reproducible and
greatly increasing the quality of what you are testing. Then, you have to think about the
granularity of the tests. It can be tempting to create one generic test and slip in as many
hidden features as you can. On the other hand, if your tests are simply unit tests, covering
every sub-function, you'll need to aggregate them in a meaningful way, in order to track
down the advancements in implementing the features. In other words, shifting your point
of view away from testing specific code sections toward testing application behavior.

This is the idea behind BDD.

Exploring Behavior Driven Development 99

Exploring Behavior Driven Development

BDD is a technique that extends the TDD approach while also using some DDD concepts.
In particular, the workflow is the same as TDD, that is, write a test, run it (initially, it will
fail), and implement the feature until the test succeeds.

What changes is how the test is written. Instead of focusing on single functions (or, even
better, relying on the developer to pick the right granularity), BDD defines the extent of
each test a bit better. In particular, as highlighted in the name of the methodology, BDD
tests are focused on the expected behavior, that is, the functionality implemented by each
use case.

In this sense, it is an explicit suggestion to keep high-level functionalities, rather than
method-by-method unit tests. BDD is also linked to DDD concepts. In particular, it is
recommended that you use ubiquitous language as a way to specify each behavior. In this
way, you have an explicit mapping between a business use case, expressed with ubiquitous
language, translated into an automatic test case.

BDD describes a way to define behaviors. In practice, each behavior is defined as a user
story, with a structure given as follows:

o Asa: This is a person or a role.
 I'want: This is a specific functionality.

« So that: This is when we can get some benefits from using that functionality.

Provided that a number of scenarios are associated with the user story, each scenario is,
essentially, an acceptance criterion, which can be easily translated into automated use cases:

o Given: This is used for one or more initial conditions.
« When: This is used for when something happens.

o Then: This is used for when one or more results are expected.

This structure is very self-explanatory. By using a similar template, and sticking to
ubiquitous language, you will have a straightforward way in which to define use cases.
It is a way that is meaningful for non-technical people and can be easily translated to
automated use cases by technical people.

Walking backward, you implement code that will gradually cover the test cases, mapping
to a behavior specification that will give direct feedback to the business on which use cases
are complete.

100 Best Practices for Design and Development

This approach offers a structured way to understand what we are implementing and
possibly select and prioritize the user story to approach as a development team. This is
also the focus of the practice that we will look at in the next section.

Comparing DDD, TDD, and BDD

So far, we have rapidly discussed three different "Something-Driven Development"
techniques. It must be clear that such practices should not necessarily be seen as
alternatives, but they might have some complementarity.

In particular, DDD relates more to the modeling of the application domain. In this sense,
it can be observed from a more architectural point of view, defining how our application is
modularized, the different layers, and even how different parts of our broader application
(or, if you wish, different teams) should cooperate.

Once we have designed such layers and components, both TDD and BDD can be used
as a way to drive our day-to-day development, ensuring we have the right testability and
feature coverage requested within our code.

On the other hand, DDD is not a requirement for TDD or BDD, which can be seen as a
simple technique that is also applicable to smaller applications, or to software architectures
defined with approaches alternative to DDD. As you will often find in this book, those
concepts can be viewed as tools, briefly introduced to give you an idea of their potentiality.
It's up to you to then take what's needed for your specific project and combine it in a
useful way.

Learning about user story mapping

User story mapping is a way to put user stories into context, identify what it takes to
implement them, and plan accordingly.

In this section, we will learn what a user story is and how it can be used as a planning
method, in order to choose what features to include in each release, following a
meaningful pace.

The user story is the same concept that we saw as part of BDD. So, it describes a feature
from the point of view of a specific persona (As a...), the functionalities required (I want
to...), and the expected outcome (So that...).

As you might observe, all pieces in the puzzle of those seemingly unrelated practices
eventually start to match. User story mapping is often described as a product backlog
on steroids.

Learning about user story mapping 101

We will discuss product backlogs in the next chapter. However, for now, consider them
as lists of features to implement. Features are added as long as analysis occurs (or new
requirements arise). These are then prioritized and picked by the development team to
be implemented.

User story mapping extends this approach by giving more dimensions to the product
backlog, enriching the information related to each feature, and linking it to a broader
vision of the product. User stories stay on top of the mapping. They describe the high-level
features that a system should provide. User stories are organized in a horizontal line and
ordered by both importance and the temporal sequence in which they happen, all from
the user's point of view.

For each user story, a list of tasks is provided. Essentially, these are the sub-features (also
known as activities) that each user story encompasses. So, we are detailing each feature,
but not yet coming to a level of detail that can be directly mapped into software (at least,
not easily). Each task is then attached to a list of subtasks (or task details), which are easier
to map to software features. This is what user story mapping looks like:

w
]
User Story B User Story C £
=
) <
Time -
[Task a] [Taskb] Task a [Taska] [Task b] [Task ¢] %
ke
R [Detail a1 } [Detail b1] { Detail c1 }
Detail a1 Detail b1
. . .)]
K Detail a2 [Detail a2 J [Detall b2] &
Detail a2 Detail b2 %
. Detail a3 [Detail a3 } [Detail b3] a
Detail a3 : ' <
wn

Figure 4.3 — User story mapping

The interesting thing about this model is that you will not have to prioritize the tasks.
You just need everything included there (sooner or later); however, you can prioritize the
subtasks, gradually improving the completeness of each task, release after release.

102 Best Practices for Design and Development

This model has a series of positive outcomes. First of all, as with BDD, you have a direct
mapping between the subtask the development team is working on and the user story (or
activity). Essentially, it gives visibility to the business regarding the finish line toward which
we are rowing. Moreover, an interesting practice is applicable to this matrix of tasks and
subtasks, namely, value slicing. This means picking what to implement for each release.

Given that you will have a finite number of resources (such as programmers, time, and
whatever else is required to implement each subtask), you cannot, of course, deliver
everything in one release. Well, you could, but it would be risky since you would have

to wait a long time before receiving feedback and being able to test the software. We will
elaborate more on the release early, release often approach (the well-known incremental
product releases technique that is widely used in Agile and DevOps) in the next chapter.

For now, what matters is that it is better to release value incrementally, by picking the
subtasks that implement, at least partially, one or more tasks and then the related user
stories. Here is what this would look like compared to Figure 4.3:

H (7]
|]
User Story B ; User Story C g
i B
. i <
Time g
[TaskaJ [Taskb] §[Taska] {Taskb] {Taskc] %
! ©
. [Detail a1 } [Detail b1] [Detail c1]
Detail a1 Detail b1
- Detail a2 Detail a2 Detail b2 Release 1 _c@
| | (pominz) (| (ooeie2] [oeaiez] { 2
Release 2 E
Detail a3 Detail a3 [Detail a3 } [Detall b31 once s _g
w
-

Figure 4.4 - Value slicing

As you can see, the approach here is oriented toward an MVP.

Case studies and examples 103

The MVP

The concept of MVP deserves some additional explanation. The term was created before
the user story mapping technique and is an independent idea. It is also applicable to
products that are different from the software code. The goal of the MVP is to maximize
the value of the product (in terms of return of investment or, trivially, how useful, popular,
and beneficial your product will be) while minimizing the risks and efforts required to
build it. The perfect MVP requires a very low level of effort and risk to build, but it can
become greatly popular and appreciated when used (and, optionally, sold).

The purpose of an MVP is to start getting feedback on the product from potential

end users (usually, a subset of early adopters). Due to this, the MVP should contain a
meaningful subset of features: not too many, to avoid wasting effort in case the product is
not well received by customers, but just enough in order to represent what the complete
product will be like. Early feedback, in the spirit of Agile development methodologies,
could also be beneficial if some steering is required in the product direction, by stressing
more on one aspect or another.

In this section, we learned about user story mapping, which is the final technique we
will explore in this chapter. In the next section, we will examine some examples of those
approaches, as applied to our mobile payments use case.

Case studies and examples

As is easy to imagine, a complete and extensive example of DDD, TDD, BDD, and user
story mapping, applied to our mobile payments case study, could easily take more than
one book. For this reason, as we mentioned in Chapter 3, Common Architecture Design
Techniques, unfortunately, we can only look at some highlights of those techniques used in
our example. However, in this section, I think it is pretty useful to take a look at, even if to
just practically visualize some concepts that might appear abstract so far.

104 Best Practices for Design and Development

The mobile payments domain model

In Chapter 3, Common Architecture Design Techniques, we looked at the basic modeling of
mobile payment objects based on the UML notation. To elaborate more on this, in DDD,
you will mostly have the following concepts:

The user is an entity. This concept is pretty straightforward, that is, the identity is
very well defined, and each user has a well-defined life cycle (from registration
to deletion).

Payment is an entity, too. Each user will want to keep track of exactly each
transaction, including the time, the amount, the receiver, and more. It is also likely
that there will be regulations for you to uniquely identify each payment transaction.

As we've already mentioned, a peer-to-peer payment is out of place as a method,
both in the sender and receiver entity. So, it is probably worth modeling a payment
service that can also work as a bridge toward classical CRUD operations in the
infrastructure layer.

On the assumption that our application is operating on a global scale, you will
need to manage transactions in different currencies. ExchangeRate is a typical
example of a value object. It is immutable and composed of currency symbols and
a number representing the exchange rate. It is a disposable object and can be easily
shared between different payments, as no identity (nor state) is considered.

Once we have defined (a very small subset of) the domain model of mobile payments, we
are going to look at the layered architecture of this application.

The layered architecture of mobile payments

If you remember the diagrams designed in Chapter 1, Designing Software Architectures in
Java - Methods and Styles, and the C4 model drafted in Chapter 3, Common Architecture
Design Techniques, you are already familiar with some of the technical components that
implement our mobile payment architecture.

Case studies and examples 105

There, the mapping between components was pretty much coarse-grained. This is because
you would associate the mobile application with the Presentation Layer, the business
logic with the Domain Layer, and so on. However, with DDD, we are progressing further
with the analysis of our application. We are going one level down toward something
similar to the C4 Container diagram (please refer to Figure 3.8 in Chapter 3, Common
Architecture Design Techniques) but from a different point of view. My idea of the layered
architecture of our application looks similar to the following diagram:

Information View Payment Initiation
(Transactions list and View
balance)

‘ Login View ’ Account

Presentation
Layer

P < c
O
\ =0
3 : v
Security Service User Service l Transaction Service ‘ LF
{Authentication, Roles, {User Info, Lookup) T
Regjstration...) : Q
<
5 5
ayment
User Payment . >
P (Entity) Service g ©
Service] |
0o
TransactionDataAdapter

(Abstract IDM and other

(Connect to Database and legacy
services)

systems)

(Cennect to Database and external
systems)

UserRepo ’

PaymentDataAdapter

Infrastructure
Layer

Figure 4.5 — The DDD layered architecture

From the preceding diagram, you might observe the following:

« All of the views in the Presentation Layer are a subset of the mobile application
functionalities. You will probably have more functionalities in the real world.
However, it's interesting to observe how some concepts of the Domain Layer
(hence, the ubiquitous language) are echoed here. Yet, this is a pretty technical layer,
so it does not strictly observe the ubiquitous language.

» The Application Layer is a support area, decoupling the needs of the frontend with
the services provided by the domain model in the Domain Layer. The relationship
with the Presentation Layer is not one-to-one in this case, but that's up to you to
decide according to your context. Additionally, this layer has a dependency on the
Domain Layer.

106 Best Practices for Design and Development

In the Domain Layer, we strictly map our domain model. So, the ubiquitous
language here is prevalent. Also, this layer should not have a dependency on the
neighboring layers in order to stay technologically independent as much as possible
(for the sake of clarity, ExchangeRate is not represented).

The Infrastructure Layer is the technological glue, providing services to other
layers, and abstracting technology-specific details. So, in this case, you can see that
UserRepo will mediate calls to IDM and other systems (for example, databases or
CRMs), while TransactionDataAdapter abstracts calls to databases and legacy
systems. Consider that in this scenario, there are no direct links between the
Presentation Layer and the Infrastructure Layer, as everything is proxied by the
Application Layer. However, that's not a strict requirement.

In the next section, I will share my views on how BDD could be applied to mobile payments.

BDD of mobile payments

As we detailed in the Exploring Behavior Driven Development section, BDD starts with a
user story. A basic user story for mobile payments could be the following:

User Story: Making a payment:

As a registered user.
I want to make a payment to another user.

So that I can transfer money (and benefit from services or goods in exchange
for that).

As you might have gathered, this user story implies other user stories (such as
Registration of a user and Login).

The next logical step is to enumerate some scenarios (or acceptance criteria) linked to
that story:

Given that I am registered.

And I am logged in.

When I select the payment feature.

Then I am redirected to the payment view.
Given that I am at the payment view.

And I am logged in.

Case studies and examples 107

o And I enter a valid recipient.

+ And I enter a valid amount.

« When I click on the pay button.
 Then a payment transaction is created.

o And a notification is sent.

As demonstrated in the preceding examples, each user story usually corresponds to more
than one acceptance criteria, which is then codified as a set of (possibly automated) test
cases. Following this, you can start to iteratively implement features until each acceptance
criteria is met, ultimately fully covering the related user story. Now, let's expand on this
user story by means of user story mapping.

User story mapping of mobile payments

In the Learning about user story mapping section, we discovered that the top-level element
is the user story. So, we will start with the stories that we have just observed in the
previous section.

Take into account that while it can be considered as a task attached to each user story, the
acceptance criterion is usually considered more like an orthogonal concept, to validate the
implementation of each story. Usually, the attached tasks are simply more detailed features
composing the story itself. Let's view an example:

Registration
.

Time

T
1

l iy - l m w Recigient Payment
| o } search I search
Social Password }
account ‘ reset : ‘Pajrmr

i
i

Figure 4.6 — User story mapping example

108 Best Practices for Design and Development

As you can see in the preceding (simplified) example, for each activity (mapping to a user
story, as per the BDD of mobile payments section) there are one or more related tasks.
Activities and tasks are ordered following a time (and priority) direction. Then, each task
is attached to a list of subtasks.

It's a logical next step to plan how to group a set of subtasks as a release, progressively
delivering value to the final customer (think about MVPs). We've described this approach
as value slicing, which appears as follows:

)
Registration Q0
- &£ A
_ <
Time
| Create n | lest | Haes Dispute & R
new user LS_E‘__] password J payment] payment E
5 Release 1
Username and | Credential
[goasers - vaidation Reciplent Payment
Social ®
el \ creation ‘:mf Release 2 _g
w
| Send | Social login | Send
l——ﬁ M—— Backlog

Figure 4.7 - Value slicing example

As you can see in the preceding diagram, we've represented a simple slicing of features
as two releases. In the first release (Release 1), you will provide the bare minimum
functionalities. It will be possible to create users, to Sign in (but not using a social
account), and to Make a payment (but without receiving a notification).

There will be no functionalities regarding lost passwords and payment disputes. In the
second release (Release 2), no new features will be added to the registration activity, the
Lost password task will be completed (being made of just one subtask), and the whole
Dispute a payment task will be completed (in both its two subtasks).

All of the other subtasks are part of the backlog, meaning they are yet to be planned (and
more subtasks can then be added). Of course, each line representing a release is drawn
together with business/product owners, which will define the priority and helps to aggregate
subtasks in a meaningful way. With value slicing, we have completed the objectives of this
chapter. Let's look at a quick recap of all the notions we have encountered.

Summary 109

Summary

In this chapter, we looked at a set of techniques to start transforming architecture
principles into working software components. DDD is a pretty complete framework that is
used to define objects and the way they interact with each other. It puts a number of clever
ideas down on paper, such as layered architectures, patterns, and bounded contexts.

Following this, we moved on to Test Driven Design and BDD. You now understand
specific ways of structuring the development of new code and mapping it to business
features. Finally, we looked at user story mapping as a way to pick functionalities to
implement and link them to tasks and activities.

All of these techniques will be better framed in the next chapter, where we will discuss
Agile methodologies, which include some of the practices that we have just discussed.

Further reading

» Anemic Domain Model by Martin Fowler (https://martinfowler.com/
bliki/AnemicDomainModel .html)

o Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans
(https://www.domainlanguage.com/)

o Domain-Driven Design Quickly, by Abel Avram and Floyd Marinescu, published by
C4Media (2007)

o 10 Common DDD Mistakes to Avoid by Jan Stenberg (https://www.infoq.
com/news/2015/07/ddd-mistakes/)

o Introducing BDD by Dan North (https://dannorth.net/introducing-
bdd/)

» BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle, by
John Ferguson Smart, published by Manning Publications (2004)

o User Story Mapping & Value Slicing by Matt Takane and Ryan DeBeasi (https://
openpracticelibrary.com/practice/user-story-mapping/)

o Top 5 Biggest Challenges when Building an MVP and how to Avoid Them by
Ilya Matanov (https://expertise.jetruby.com/top-5-biggest-
challenges-when-building-an-mvp-and-how-to-avoid-them-
2969703e5757)

o The New User Story Backlog is a Map by Jeft Patton (https://www.
jpattonassociates.com/the-new-backlog/)

64157 367EF198

5

Exploring the
Most Common
Development
Models

In this chapter, we will position some of the notions we have discussed so far into a more
complete picture. We are going to elaborate on the most common development models.
We've already seen the importance of designing proper architectures, how to collect
requirements, and how to translate the architectural ideas into code solutions that answer
those requirements.

The software development models that we will see in this chapter revolve around all of
those aspects (and some more), arranging them in proper and tested ways, to achieve
different results or emphasize certain areas.

In this chapter, we will cover the following topics:

« Learning about Code and Fix

« Glancing at the Waterfall model

112 Exploring the Most Common Development Models

« Understanding the Agile methodology
« Introducing Lean software development
« Exploring Scrum

« Learning about other Agile practices

« Understanding DevOps and its siblings

When discussing development models today, everybody goes all-in with DevOps and
Agile techniques. While I do endorse all this enthusiasm for those approaches, my
personal experience says that it's not that easy to apply them correctly in all the different
contexts. For this reason, it's important to know many different approaches and try

to get the crucial lessons from each one. Even if you do not have the ideal conditions

for working with DevOps, it doesn't mean that you cannot use some of the good ideas
associated with it.

At the end of this chapter, you will have an overview of the most widespread development
models, along with their pros and cons. This will help you choose the right model,
depending on your project needs.

But first, let's start with the naive development model (or a non-model, if you want), that
is, Code and Fix.

Learning about Code and Fix

Let me get to the point as soon as possible — Code and Fix is not a model. It is something
more akin to anarchy. The whole concept here is about diving into coding with no
planning at all. For this reason, it is called Code and Fix. In this, you completely skip all
the crucial phases highlighted hitherto (requirements collection, architectural design,
modeling, and so on) and start coding.

Then, if things go wrong, such as there are bugs or the software does not behave as
expected, you start fixing. There is no dedicated time for writing documentation, nor for
automation and unit testing. Versioning of the code is naive, and so is the dependency
between modules (or maybe everything is stuck in just one huge module).

As you can imagine, there are few, if any, advantages to adopting this non-model. Let's
start with the (obvious) disadvantages:

 You are basically working against whoever will maintain the code (perhaps your
future self). All the quick fixes and workarounds that you will stick into your code
will come back to bite you when you need to touch it again. This phenomenon is
usually known as technical debt.

Glancing at the Waterfall model 113

« Since you are not analyzing requirements properly, you risk wasting effort working
on a feature that does not provide any value to the customer and the final user.

o Collaboration between developers in the team, and with external teams, is hard,
as there is no clear separation of duties (hence, Code and Fix is also known as
cowboy coding).

o It's hard to estimate the time needed to complete a release.

So, it's easy to say that adopting Code and Fix is not advisable at all. But surprisingly enough,
it is still very widespread. These are the main reasons for its widespread application:

« Small teams with no dedicated roles (or with just one developer)
o A lack of skills and experience

« Alack of time (not a good excuse at all, as a bit of structure will probably save
time anyway)

However, Code and Fix can be partially justified when working on very small projects
that will not require any maintenance or evolution, such as prototypes or projects with a
defined, short lifetime.

It's also worth noticing, before diving into more complex and complete techniques,

that embracing such methodologies is not a warranty of a successful project, and
implementing Scrum, DevOps, or whatever you like is not going to be the perfect

way to avoid a technical debt. Indeed, the software development methodologies are
suggestions on how to give cadence on a project and what are the meaningful splits of
roles and responsibilities, as seen in other projects. But it's ultimately the responsibility
of the project team (and yours, as an architect) to ensure that the methodology (if any) is
correctly used and that no pieces are left behind, in terms of technical debt, code quality,
and project scheduling.

With that said, the natural step after Code and Fix is to provide a bit of structure,
sequentially, which is known as the Waterfall model.

Glancing at the Waterfall model

As has been said, the Waterfall model is a structured development model based on a
sequence of different phases. This means that each phase begins when the previous one
has ended.

114 Exploring the Most Common Development Models

The Waterfall model probably stems from the application of project management practices
coming from other kinds of projects, such as constructing buildings or manufacturing
objects. Indeed, while I am no expert on them, it's easy to understand that in order to
build a house, you have to precisely follow a sequence of steps, such as calculating the
materials and weights, building foundations, and constructing walls.

The Waterfall model originated from a number of different articles and lectures (with the
most important coming from Winston Royce) and has also been ratified in an official
document by the US Department of Defense.

The phases in the Waterfall model are as follows:

Requirement management: You probably have a very good idea of what this

phase entails, as per Chapter 2, Software Requirements — Collecting, Documenting,
Managing. In the Waterfall model, the requirement specification must be completed
and formally accepted before proceeding with the next phase, while we discussed
how, usually, an iterative approach is more natural.

Analysis/design: Sometimes defined as two different phases, the goal is to start from
system requirements and then define the solution architecture to satisfy them. As

in the previous phases, whoever is in charge of the next phase must formally accept
the deliverables coming from this phase (such as system blueprints, diagrams, and
pseudocode) in order for the process to continue. This basically means that developers
must clearly understand what they are supposed to implement.

Implementation: In this phase, the development team, starting from requirements
and from the deliverables produced in the previous phase, must write the code to
implement a proper software solution. This phase is, of course, crucial, and the
correct completion of this phase basically means the success of the whole project.

Testing: As seen before, the acceptance of the deliverables coming from the
preceding step is part of each phase. With testing, the approval is so important
(and so complex) that it overlaps with the whole phase. The Waterfall model does
not specifically distinguish between different kinds of testing, but this phase is
commonly intended as user acceptance testing.

Operations/maintenance: This is the final step, facilitated by technical activities
ensuring the proper setup of the solution in a production environment, as well as all
the planned and unplanned activities to keep it operating properly.

The following diagram demonstrates the phases of the Waterfall model:

Glancing at the Waterfall model 115

Requirements
Management

Analysis /
Design

Implementation

Operation /
Mainteinance

Figure 5.1 — The Waterfall phases

As you can see, the Waterfall model is a big jump when starting from Code and Fix, as we
are starting to see a clearer distinction of what should be done in each phase.

Advantages and disadvantages of the Waterfall model

The Waterfall software development model is still widely used. Some of the advantages of
this model are as follows:

o There is a clear definition of phases, hence planning is rather easier. Even though
the phases should not overlap, it flows sequentially.

 The mechanism encourages a proper handover between teams, including a formal
acceptance between one phase and the following, giving greater control over
planning and project quality.

116 Exploring the Most Common Development Models

However, as you probably already know, there are some disadvantages to this methodology:

o The first and most evident disadvantage is the lack of flexibility. If you implement
the Waterfall model entirely, you should not start implementing it before
requirements have been collected in their entirety and the design has been carried
out in full. In the real world, this is unlikely to happen; as we have seen, the
requirement collection keeps flowing and the architecture design evolves while we
face (and resolve) implementation issues.

» Moreover, the software that we are building is seen and tested once implementation
is complete. This means that you will not receive feedback on your code until very
late in the project (maybe too late).

For this reason, the Waterfall model has undergone several transformations, usually
shortening the feedback loop, or cycling and jumping between phases (such as adding more
requirements while implementing or managing defects identified during the testing phase).
But while this model is still used, more flexible methodologies are now widespread, as they
offer a less risky approach to development, and it all starts with Agile methodologies.

Understanding the Agile methodology

The Agile methodology is a galaxy of best practices and techniques. A lot of still widely
used methodologies inspired Agile (such as Scrum and Kanban), but the official birth of
the movement stems from the Agile Manifesto, published in 2001. The four very popular
key concepts (values) of the Agile Manifesto are as follows:

o Individuals and interactions over processes and tools
o Working software over comprehensive documentation
o Customer collaboration over contract negotiation

 Responding to change over following a plan

While some of the preceding points can be misinterpreted and result in bad behaviors,
such as ditching documentation and planning, it's enlightening to think about such simple
but powerful advice. Also, be careful that the manifesto itself advocates against complete
anarchy as a result of the following note:

"While there is value in the items on the right, we value the items on the
left more."”

Understanding the Agile methodology 117

Important Note:

The values on the left here are the ones mentioned at the beginning of each
value and refer to freedom (such as working software), while the ones on the
right are the ones at the end, referring to discipline (such as comprehensive
documentation).

This part is often foreseen by teams looking into Agile methodologies as an excuse to skip
the boring parts of the development process. The Agile process appreciates freedom but
does not preclude some level of order.

There is moreover a very important observation to make while introducing the topic

of Agile. The Agile methodology, and all its implementations described in this chapter,
consider it crucial to have the customer (or the business owner, in other words, who is
paying for the project) be aware of the methodology and willing to be part of it. Indeed,
it's common to see in the following The Agile principles section the advice and principles
involving the customers, as they're an active part of the software development project
by providing inputs and feedbacks in many steps of the process. For such a reason,

the adoption of an Agile practice will not be possible if the customer does not agree
(implicitly or explicitly) with it.

The Agile Manifesto further details the basic values of Agile by providing a list of principles.

The Agile principles

As opposed to Waterfall, Agile bets everything on collaboration (within the team, and
with customers too) and releases small chunks of working software often with a view to
getting feedback early and adapting planning if necessary. Instead of trying to foresee
everything and plan accordingly, Agile teams focus on quickly adapting to changing
conditions and acting subsequently. This is well detailed in the Agile principles:

o Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

» Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

+ Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference for the shorter timescale.

 Business people and developers must work together daily throughout the project.

« Build projects around motivated individuals. Give them the environment and
support they need and trust them to get the job done.

118 Exploring the Most Common Development Models

 The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

« Working software is the primary measure of progress.
« Agile processes promote sustainable development.

o Sponsors, developers, and users should be able to maintain a constant
pace indefinitely.

« Continuous attention to technical excellence and good design enhances agility.
« Simplicity - the art of maximizing the amount of work not done - is essential.
o The best architectures, requirements, and designs emerge from self-organizing teams.

+ Atregular intervals, the team reflects on how to become more effective and then
tunes and adjusts its behavior accordingly.

As you may see, other best practices are stressed in these principles, such as focusing on
good architecture, privileging simple solutions, and building motivated teams. Of course,
those are the general ideas. Before and after the publishing of the manifesto, a number

of practices have been built around similar topics. In the next section, we will talk about
Lean software development, a practice often associated with Agile development, which has
its roots in the manufacturing industry.

Introducing Lean software development

Lean software development is a framework developed after the manufacturing method
of the same name, which, in turn, is derived from the Toyota Production System. The
interesting concept regarding this topic, indeed, is how it translates best practices from
industrial production into software production. This is also due to the experience of one
of the authors (Mary Poppendieck) in this context. She worked in the manufacturing
industry and had the opportunity to learn about the production processes in a factory
context directly.

We will quickly cover a selection of the principles of Lean software development in the
upcoming sections.

Eliminating waste

Waste is a concept directly mutated from the Toyota Production System. Basically, waste is
everything that costs resources without giving any value to the finished product.

Introducing Lean software development 119

Taking it to the extreme, in software development, everything that is not related to
analysis or coding could be a waste. This can be seen as another point of view in the
simplicity Agile principle.

To identify waste in software development, Lean software development suggests looking
into its seven main areas:

« Partially done work: This area relates to non-completed or non-released features.
This means accumulating code, which has to be maintained, without providing any
utility to the final customer. Moreover, since incomplete work is never proven in
production, you can never be 100% sure that everything works as expected. You can
also take into account the fact that releasing the software, which we are building in
production, is the only way to understand whether such code is valuable.

A famous paper by Ron Kohavi states that just one-third of the implemented
features provide positive impacts, while the rest are neutral or even negative. The
only way to figure it out is to release the code in production and see the feedback of
real customers using it.

+ Extra Processes: This refers to bureaucracy. This means paperwork, approval
processes, and similar issues. We all know that there are things that just can't be
skipped, such as security checklists and handoff documents for production release.
Often, however, those processes are overcomplicated and overengineered. This
area should be looked at for simplifications or even automation where relevant.
Instead of manually answering security-related questions, maybe you could just run
automated tests, as an example.

o Extra features: This is a very common pitfall. Perhaps in the requirement analysis,
we are just pushing more and more features without any specific thoughts on
whether those are useful or not. Or maybe, when implementing a new feature, it's
just so easy to add a similar one, which nobody is asking for but can be useful sooner
or later. This is just wrong. Even if the code is easy to add, it must be maintained, or
else it can potentially introduce bugs.

o Task switching: Now, it's common sense to know that context switches are time-
consuming. That is particularly true in software development, where you have a
lot of things to sort out, from setting up your environment (although this can, and
should, be automated), to focusing on project structure and code standards, and
recalling the team dynamics and latest updates. It is basically as painful as it seems,
yet very tempting to juggle multiple projects at a time.

120 Exploring the Most Common Development Models

« Waiting: This is a very common thing to relate to. We end up waiting for a
number of reasons, such as the environment being created and an analysis being
completed. While the technical stuft can be mitigated by automation, from a project
management standpoint, it is way harder to plan everything to ensure synchronized
handoffs between teams. To act against waiting, you may be tempted (or forced) to
help out on other tasks and projects, while this can easily transform into other waste
(as per the previous point, task switching is not the best idea).

« Motion: As introduced previously, we have handoffs between different teams.
That's the concept of motion. The longer it takes, the more waste you will have.
This includes having a huge amount of back and forth, or simply too many teams
cooperating. Handoffs not only include the exchange of artifacts (such as source
code) but knowledge in general (such as documents or simply answers).

o Defects: Everybody knows what a bug is and how much time it can take to find the
causes and solve it. Of course, it's just impossible to write software without any bugs.
But there are things you can do to reduce the impact of bugs, such as improving test
coverage (including code analysis), which will end up saving time by identifying
issues before they move into a snowball effect. Also, as has already been discussed,
the sooner you go into production, the sooner you will find bugs (and have the
opportunity to enrich your test suite).

To identify waste in your software production cycle, the Lean software development
framework provides a very useful tool called Value Stream Mapping.

Value Stream Mapping is used to observe the software development process from an
external point of view, mapping all the steps necessary (and the waiting time between
them) for a requirement to go from inception to production release (usually known as the
time to market).

You are supposed to track down this simply with paper and pencil. After tracking down
the whole software cycle, you usually end up figuring out that the majority of the time is
lost in waiting or in other types of waste, as per the previous list. Now that you have some
quantitative data, with good executive sponsorship, you can act by changing the flow to
maximize the time spent delivering value and minimizing waste. This will usually include
simplifying approval processes and automating manual steps. The efficiency that can be
attained here is mind-blowing.

Introducing Lean software development 121

Deciding as late as possible

This section is all about being open to changes. Especially when making expensive
choices, it is good to defer the decision as much as possible, as more information may
come to light to support the choice. Moreover, making a decision later will reduce the risk
of having to get back to redoing part of the work owing to a wrong decision.

However, there are more subtle implications in this principle. What comes to my mind is
the mythical quote from Donald Knuth:

"Premature optimization is the root of all evil.”

This means that if you make choices (especially hard to undo choices) too soon, you may
end up making the wrong choice because of a lack of information, or simply wasting time
with a topic that will end up not being that relevant. So, one strong piece of advice from
the Lean software development framework is that you shouldn't commit to everything
unless you have to, stay open and flexible, and defer from making complex decisions until
you have no alternatives.

Translated in the software world, there are a number of different ways to do this, such

as using stubs instead of real systems (before deciding which system to use), defining
modular options (to facilitate the switching of different implementations), and using
feature flags (to elicit specific behaviors directly in production). Just make sure that you
find the right trade-oft to avoid piling up waste. Implementing tens of different behaviors
because you don't know what the final decision will be is, of course, not an option, but
there are middle grounds.

A rule of thumb is usually to avoid planning for years or even months in advance. It's
better to end up with very detailed planning for the upcoming weeks, which will become
less and less detailed going forward in time.

Delivering as fast as possible

This is a concept that I've emphasized a lot, so I will keep it as concise as possible.
Organizing the delivery work in small chunks is key. That's what fast refers to. You have to
plan for releasing often. This will do for having feedback early and perfecting your strategy
on the go.

There are several pieces of advice here, such as having a regular rate of release (both in
terms of the time window and in terms of the number of features) and moving from a
push to a pull approach (there will be more on this when we discuss it in the Kanban
board section). Personally, I think the most important thing is to avoid keeping the team
overloaded. Having some spare capacity will allow the team to work more efficiently.

122 Exploring the Most Common Development Models

Optimizing the whole product

As stated previously, optimization is tempting but not necessarily always the answer. The
thinking here is about approaching the process (and the system) as a whole. Optimizing
just one of the subparts (or the subprocess) may indeed have adverse effects on the final
result. Let me explain this with the aid of two practical examples (in the process and
system area):

It may be tempting to reduce the testing phase to improve the time to market.
However, if you have a holistic approach, the time spent on fixing bugs will probably
be bigger than the saving. And we are not taking into account the impacts of bugs,
such as downtimes, bad reputation, and customer churn.

You may consider optimizing the disk usage of your application in many ways,
such as compressing files or using special formats (such as binary). But this may, of
course, come at the cost of a slower reading so, overall, it may not be a good idea.

Pros and cons of Lean development

As we have seen, Lean is the first practical implementation of the Agile concepts. For that
reason, the advantages over more structured methodologies (such as the Waterfall model,
which we have already seen) are evident:

A greater flexibility, meaning that changes in the planning and requirements are
better tolerated

Enhanced freedom for the teams, where they may choose what works for them
locally, that is, both technologically and from an organizational point of view

A shorter feedback cycle, which means faster time to market and understanding
sooner how your software performs (as discussed in Chapter 4, Best Practices for
Design and Development, when talking about Minimum Viable Products)

The disadvantages of Lean development will definitely vary, based on the team
composition and the project complexity. Some common ones are as follows:

Lean is more of a set of principles (part of the broader set of Agile principles), rather
than a structured methodology. This means that the outcome may be less predictable.

As a further consequence, it doesn't usually work well with less-skilled teams, as it
requires high maturity and greatly delegates decisions to each team member.

Exploring Scrum 123

« In the case of big projects, the modularization for being worked by many small lean
teams is accomplished, while the methodology can scale well. It's also hard to keep
track of the greater picture and synchronize between each team and subproject.

+ Deciding as late as possible means that some architectural decisions are delayed too
much. As a consequence, from time to time, some rework may happen (because of
wrong choices or simply the lack of any choice).

In this section, we learned about Lean software development, which is a framework full of
good ideas, practices, and tools.

We've seen a walk-through of a lot of valuable ideas, such as waste reduction, openness to
changes, holistic optimization, and fast feedback loop.

Bear in mind that there is a bit of overlap and mutual influence between the different
philosophies in the Agile spectrum. Let's now switch to another well-known one - Scrum.

Exploring Scrum

The Scrum methodology was launched by Ken Schwaber and Jeff Sutherland in a paper
published in 1995. The authors were also involved in the creation of the Agile Manifesto a
bit later, so some of those ideas are directly linked.

Scrum differs slightly from Lean software development because, more than principles and
high-level advice, it focuses directly on roles, project cadence (via the so-called events),
and rules. The authors stress the fact that while you can customize the technique a bit,
Scrum is intended to be all or nothing, meaning that you should accept and practice all the
key components before embarking on a Scrum project.

Scrum refers to a phase of rugby and is regarded as an analogy for a cohesive, cross-
functional team, pushing together to pursue a common objective.

In this section, we will see the fundamental elements of Scrum: the team composition
(roles and responsibilities), the events (meetings and other key appointments of a Scrum
project), and artifacts (the tool supporting the Scrum methodology).

Let's start with the team setting.

124 Exploring the Most Common Development Models

Understanding the Scrum teams

The Scrum teams are kind of a self-sufficient ecosystem. This means having all the skills
needed to deliver tasks (or, in other words, being a cross-functional team), and being
self-organized (as long as the team satisfies expectations, it can follow its own rules). The
Scrum methodology identifies three main roles: the Scrum master, the product owner,
and the members of the development team.

Development team

The development team, as you can imagine, is the one that will hands-on complete the
assigned tasks, in the form of implemented and testable features. It is, by design, a flat
team (no hierarchy or sub-teams are allowed) and has all the skills needed to complete the
tasks (meaning that you can suppose it will not only include developers but also security
experts, DBAs, and everyone else that should be needed).

As said, the development team is autonomous in terms of technical choices but is
accountable (as a whole) for the outcomes of those choices. One of the main discussions
centers on development teams when Scrum is applied to large enterprise environments.
Indeed, often, the enterprise has guidelines and policies that have to be respected and, in
this sense, are limiting the development team's freedom. Moreover, the need for different
kinds of skills may lead to variability in the team's composition (with people temporarily
moving between different projects), and that is a mechanism that needs to be sometimes
facilitated and monitored, as schedule clashes may occur.

Product owner

The product owner is essentially responsible for the development pace. The product
owner is the person committed to selecting the working items from a bunch of to-dos
(also known as the Product Backlog, as we have briefly seen in Chapter 4, Best Practices for
Design and Development, when talking about User Story Mapping), and understand which
items must be implemented and when.

We will talk more about the Product Backlog soon, in the Understanding Scrum artifacts
section, but for now, you can imagine how crucial this task is in terms of customer
expectations, and how important it is to choose tasks with the right rationales to
maximize overall throughput.

Exploring Scrum 125

Scrum Master

The Scrum Master is basically the sponsor and advocate of the Scrum methodology,

both internally to the team and externally to the rest of the organization. Their role is to
mentor the junior members of the team and, generally, anyone who is not an expert in the
methodology.

If the organization is adopting Scrum at scale, all Scrum Masters create community-
exchanging best practices on how to achieve results better. Scrum Masters are responsible
for facilitating the jobs of the other members of the team by circumventing the blockers
that prevent the team from performing at their full potential. The Scrum Master and the
product owner are two different roles, and they should be filled by different individuals.

In the next section, we'll be looking at Scrum Events.

Learning about Scrum Events

Scrum Events are the institutionalized project's recurring appointments that set the pace
of overall implementations.

Scrum Events are instrumental to a project's success by providing the opportunity for the
planning, execution, and reviewing of the work that needs to be done.

The basic unit of measure of this pace in Scrum is the Sprint.

Sprint

A Sprint in Scrum is a recurrent iteration, time-boxing a set of development activities. A
Sprint is usually considered a mini project, with a fixed timeframe of 2-4 weeks. During
the Sprint, there is a fixed set of goals that cannot be changed, and they are picked from
the development team in the way they want.

A Sprint is essentially used to implement Agile best practices for working iteratively by
releasing working software often and in small batches. This is, of course, very useful in
reducing risks. If there is a shift in priorities, or something else goes wrong, your biggest
risk in terms of resources is to lose one Sprint's worth of effort.

126 Exploring the Most Common Development Models

Sprint planning

Sprint planning is, of course, the meeting at which the whole Scrum team reunites to
choose what will be done during a particular Sprint. The product owner clarifies the
priorities and the features to be implemented by looking at the Product Backlog. Then, in

accordance with the development team (and facilitated by the Scrum Master), the Sprint
Goal is defined.

The Sprint goal is usually one or more consistent features, representing the objectives

for the Sprint. The Sprint goal is then defined as a set of workable items, picked from the
Product Backlog. Those items, and the way to achieve them (which is the responsibility of
the development team to define), constitute the Sprint Backlog.

Daily Scrum

The daily Scrum is a short meeting held every day of the Sprint by the development team.
It's usually set up at the beginning of the workday, with a duration of 15 minutes (this is
just a rule-of-thumb time slot; it may more or less depend on the team size and project
complexity). The Scrum Master and product owner can join, but the meeting is led by the
development team.

The goal is to stick to Sprint planning. While there is no fixed agenda, it is usually aimed
at reviewing the activities from the day before, planning activities for the current day,
and addressing any issue that may put the Sprint goal at risk. Ideally, the daily Scrum
should be the only sync meeting for the day, thereby boosting the development team's
productivity. However, in the real world, it is not unusual for development teams to have
follow-up meetings to address particularly complex issues.

The daily Scrum is also called a standup meeting, a naming that is also used in other
Agile project methodologies. The reason behind it is that (in theory) it should be done
standing up, giving further motivation to the participants to make it quicker (it will be
uncomfortable to stand up for an hour during a boring meeting) and to stay active and
participate during the meeting.

Sprint review

The Sprint review is a recurrent meeting held at the end of each Sprint. The entire
Scrum team participates, and relevant business stakeholders are invited by the product
owner. The development team has a demo of what was implemented during the Sprint, if
possible. There is then a question-and-answer session to address doubts and discuss any
issues that arose, if any.

Exploring Scrum 127

This is also an opportunity to discuss Product Backlog based on current circumstances.
This may also include changing priorities. Other all hands discussions may occur as well,
such as budget, planning, resources, and similar topics. All those interactions usually
provide valuable inputs for the next Sprint planning.

Sprint retrospective

The Sprint retrospective is a meeting lasting a few hours that takes place after the Sprint
review and before the Sprint planning. The meeting involves the entire Scrum team. The
goal is to focus on what went well and what needs to improve by looking at the previous
Sprint. This meeting is usually focused more on processes, tools, and team interactions.
This is also often used as a team-building activity.

It's worth noticing that there is a difference between the review and the retrospective.

The Sprint review is focused on what has been implemented (the product); it includes a
demo, and the business stakeholders are present and an active part of it. The focus is then
on what we have done. In the retrospective, the business stakeholders may or may not be
invited, and the focus is on how we have done whatever we have done. In other words, the
spotlight is on the Scrum team, the interactions, and the processes. We may discuss the
adopted tools, the choice of frameworks, the architecture, or simply what we liked and
didn't like about how we worked in our last Sprint.

The Sprint retrospective meets a common goal of most Agile methodologies, which
is continuous improvement. We will come back to this concept later when talking
about Kaizen.

Backlog refinement

Backlog refinement is usually a continuous process, more than a fixed appointment. The
objective of refinement is reviewing items in the Product Backlog (the project's to-do

list; there will be more on this in the Understanding Scrum artifacts section). This is done
by the product owner and the development team (or part of the development team).

They cooperate to detail the items (basically, analyzing technical aspects and revisiting
requisites) and refine the estimation (which is the responsibility of the development team).

Priority shifting may happen. Usually, the items with the highest priority (which are likely
to happen in the next one or two Sprints) are supposed to be the clearer ones, while the
lower-priority items are expected to be reviewed again. In practice, those activities are
completed by the team in one or two fixed appointments per Sprint. Scrum suggests using
less than 10% of the team's capacity in this sense.

128 Exploring the Most Common Development Models

In the next section, we will be learning about Scrum artifacts.

Understanding Scrum artifacts

Scrum artifacts are tools supporting the Scrum activities. This methodology refers to
such tools as a way to implement transparency. In this sense, those artifacts should be
available to all the teams and the relevant stakeholders.

While digital supports are commonly used, the use of physical items (such as whiteboards
and sticky notes) to encourage brainstorming and in-person collaboration is also
widespread. The work produced with physical tools should then be digitized for tracking
and sharing purposes. Let's now see what those tools are, starting with the Product
Backlog, followed by the Spring Backlog.

Product Backlog

We have already referred to the Product Backlog a couple of times, so by now you probably
already have an idea of what it is, more or less. In simple terms, the Product Backlog is

the single source of truth for each thing that should happen in the product, meaning new
features, bug fixes, and other developments (improvements, refactoring, and so on).

These are categorized, including a description, unique ID, priority, and the effort required.
The effort is constantly evaluated and refined by the development team. Items in the
Product Backlog may be attached to test cases and other details, such as mockups and
more. The product owner is ultimately accountable for the Product Backlog.

Since the Product Backlog is the funnel ingesting requests to be implemented by the
development team, it can be regarded as an infinite scroll, meaning that new items will
continuously be added to it. As already discussed in Chapter 4, Best Practices for Design
and Development, the User Story Mapping technique can be considered a variation or
evolution of the Product Backlog, adding more information and dimensions to it.

Sprint Backlog
The Sprint Backlog is the chunk of work to be done during each Sprint. It comprises
the following:

« The Sprint goal, being the feature (sub-feature, or set of features) that we aim to add
to the product as a result of the Sprint

Exploring Scrum 129

« A set of items selected from the Product Backlog that need to be implemented in
order to achieve the Sprint goal

A plan for implementing those items during the Sprint

That's the way to keep work structured at a consistent pace in Scrum.

Advantages and disadvantages of Scrum

It should be evident, at this point, that Scrum is a very well-structured methodology
(while still being flexible and adhering to Agile principles). For this reason, it is so
widespread, up to the point that there are professional certifications available and plenty
of job positions for experienced Scrum professionals.

The main advantages of adopting Scrum could be summarized as follows:

« The roles and responsibilities are very well defined, leaving less room for conflicts
and misunderstandings.

o There is a defined timetable and some predictable moments in which updates (and
deliverables) are shared with the rest of the team (and made visible to management).

« It's easier to do the planning (even with some expected flexibility and inaccuracy)
and have visibility on what's completed and what is left almost constantly (also
thanks to the concept of backlog and, in general, to the Scrum artifacts).

The Scrum disadvantages are similar to the ones in the other Agile and Lean
methodologies. The following comes to mind:

o The structured process flow and events could be seen as boring and time-intensive,
especially when working with highly experienced teams or in long-term projects.

+ The coordination of multiple Scrum teams working on different projects may
be complex.

 Bigger teams (with more than nine people) usually don't work well in a Scrum setup
(hence, they should be modularized into smaller teams, and coordination will be a
downside, as per the previous point).

As you have learned in this section, Scrum is a simple but disciplined way to structure the
software development process. And due to its simplicity and effectiveness, it has become
widespread. So, I hope the information shared in this section has motivated you to learn
more and to apply Scrum principles to your projects.

In the next section, we will see some more Agile practices that are not directly linked with
Scrum or any other particular framework but are often used complementarily.

130 Exploring the Most Common Development Models

Learning about other Agile practices

So far, we have seen the Agile methodologies and had a quick overview of the Lean
software development principles and the Scrum framework. All of those ideas are often
complemented by a number of practices and tools useful for completing specific phases.

In this section, we'll learn about some of those tools, namely, Kaizen, Planning Poker,
Kanban boards, and Burndown charts.

Let's begin with Kaizen.

Kaizen

Kaizen is a principle directly borrowed from the Toyota Production System, which, as we
have seen, is a core inspiration for Lean software development. Kaizen comes from the
Japanese word for continuous improvement.

This simple concept is the essence of Kaizen, which articulates it with a comprehensive and
elegant philosophy, embodying the concepts of humanization of the workplace, constant
change (the opposite of big-bang, huge transformations). It is also responsible for identifying
and removing waste (as we discussed in the Introducing Lean software development section),
encouraging valuable feedback (both internal and external), involving all individuals in the
organization (from top managers to lower levels), and so on.

Another core concept of Kaizen (again, very close to some of the Agile principles seen so
far) is the shift in the testing process (in a broad sense, as in inspecting the quality of the
product) from the end of production to an ongoing process, once again getting feedback
early to minimize drift and facilitate constant optimization.

Kaizen is often orchestrated as a loop of five recurring phases:
1. Observe: This phase is used to understand what issues should be solved (or which
aspect can be improved).
2. Plan: This phase is used for setting measurable objectives for achievement.

3. Do: This phase is used for putting into practice actions to meet those
measurable objectives.

4. Check: This phase is used for comparing actual results with expected objectives.

5. Act: This phase is used for adjusting (or complementing) the plan to enhance the
results and start the loop again.

Learning about other Agile practices 131

The following diagram illustrates these phases:

Figure 5.2 - The OPDCA loop

While nicely summarized by the continuous improvement concept as seen, Kaizen contains
a lot of sage advice and ideas, very close to the whole idea of Lean and Agile.

Planning Poker

Planning Poker is an estimation technique, often used as part of the Scrum framework
(but not a mandatory part of the framework itself). When used in Scrum, Planning Poker
is done as part of Sprint planning to estimate (or refine the estimation of) the items from
the Backlog.

Planning Poker is a way of getting an estimation of the effort of a given item, and it works by
inciting the participant to provide a size with no influence from the other team members.

Poker is played by a team of estimators (usually the development team, which will then
implement the features), a moderator, and a responsible project participant (which is
usually the product owner if the Scrum methodology is used, or otherwise someone with
a knowledge of the overall project and roadmap, such as a project manager or other
senior staff).

132 Exploring the Most Common Development Models

Each estimator team member has a deck of cards (or, commonly, a mobile app) used to
represent a difficulty grade. There is no standard here; it is common to use a Fibonacci
progression, but your mileage may vary. The Fibonacci sequence has a reasoning behind
it: the more the number grows, the more distant they are from each other, and so your
choice must be more thoughtful. Another commonly used unit is the t-shirt size (S, M, L,
XL, and so on).

Also, the expressed value (being a card, a number, or a t-shirt size) may directly map to
time (as in days to implement) or not.

When the meeting starts, the moderator acts as a note-taker and master of ceremonies.
They read each feature to estimate and start a discussion to clarify the meaning by
including estimators and the product owner. Then, the estimators select a unit (by
drawing a card, picking a number, or a size) simultaneously (to avoid influencing each
other), indicating the estimated difficulty. If there is no consensus, the owner of the
highest and lowest estimation has to explain their point of view. Then, everybody again
draws a card until a consensus is reached. Consensus rules can be customized, such as
having a defined maximum gap from a perfect average or having team members that will
own that development to agree on what's an acceptable stop.

Kanban board

A Kanban board, in the software development world, is a visual way to represent the flow
of items, from the ingestion to the development team to the implementation. It is a subset
of the Value Stream Map (as seen in the Introducing Lean software development section).
Kanban is indeed inspired by, and adapted from, the Toyota Production System.

In its simplistic implementation, a Kanban board is a whiteboard (physical or digital),
with three vertical swim lanes splitting it into TO DO, DOING, and DONE. Each item
is represented as a sticky note moving between those lanes. However, it is common to
customize it by adding different columns (such as splitting DOING into Design, Code,
and Test), or horizontal swim lanes (to represent concepts such as priority by having

a kind of fast lane for urgent things such as production issues). The following diagram
illustrates this:

Learning about other Agile practices 133

ToDo DSNIE DOME
Design | Code | Test

!Ftaiures __,L

P, ey | K=

L— — | .
IE‘*B L_L_ Emi | Teature ¢

o

il

FastLane

Figure 5.3 — A Kanban board

Kanban boards are just an artifact part of a bigger philosophy (Kanban), which is applied
both to software development and industrial production (as Lean).

While describing the entire philosophy is beyond the scope of this book, there are at least
a couple of concepts worth mentioning. The first is Work In Progress (WIP). This is the
number of open items that the team is working on. WIP is easily tracked and visualized on
the board. As per the Lean methodology, Kanban advises against using context switching;
hence, a constraint on WIP should be present at any time.

Another important concept is pull. Basically, the Kanban approach puts the working items
at disposal of the development team (in the TO DO column). As opposed to the push
paradigm, the team chooses (pulls) what to do at their own pace. This avoids hogging the
team and maximizes throughput.

Burndown chart

A Burndown chart is a common artifact (physical or digital) to clearly show a project's
progression. It is very useful, regardless of which Agile methodology is used, because it
gives real-time insights into planning. As has been mentioned, Agile is against detailed,
advanced planning, so having a current snapshot of the project's progression (and maybe
some forecasting) is precious for management.

134 Exploring the Most Common Development Models

A Burndown chart plots the tasks (usually as a sum of the required effort) as the vertical
axis and the timeline as the horizontal axis. Drawing a line from the top left (project start)
to the bottom right (project completion) provides an ideal, linear progression. At regular
times (such as every day, or at the end of each Scrum Sprint), a dot is plotted that crosses
the implemented tasks and the current moment in time. The following diagram is an
example of a Burndown chart:

i Real Progression

Ideal Progression

45
40 —
35 —

30 — e

25 — ‘.
20 —
15 —
10 —

Figure 5.4 - A Burndown chart

As you can see, by drawing a line over those dots, you can compare the ideal project
progression versus the actual project's progression. Roughly speaking, if the real project
progression is above the ideal one, you are probably late, whereas if it's below, you are
ahead. Having minimal deviations from the ideal progression means staying on track,
and it's usually a good indicator of a project's health. Also, it gives good hints on when the
project (or, at least, the represented list of tasks) will be completed.

In this section, we have seen a nice list of tools that can provide you with support in Agile
software development. Regardless of the methodology you are using, if any, such tools can
be useful in addressing common use cases, such as optimizing processes and estimating
development effort.

In the next section, we will talk about a very hot and debated topic, which seems to be
getting all the attention lately - DevOps.

Understanding DevOps and its siblings 135

Understanding DevOps and its siblings

At the time of writing, DevOps is an overinflated term. It is seen as a silver bullet for
every development problem, and a mandatory prerequisite for being considered cool. I'm
not going to decrease the hype about DevOps, as I truly believe it's a precious technique
useful for ensuring functional and high-performing teams. However, it must be said that
DevOps is more a set of best practices, rather than a well-codified, magic recipe. And, as is
common in these cases, one size does not fit all.

DevOps can be seen as essentially an extension of Agile methodologies. Indeed, the
adoption of Agile practices (not one specifically) can be seen as a prerequisite of DevOps.
And, in turn, DevOps is considered to be an essential condition for the adoption of
cutting-edge approaches such as microservices (more on this in Chapter 9, Designing
Cloud-Native Architectures).

The essential characteristic of DevOps is cooperation between different roles. This
commonly means, in practical terms, a small team, encompassing all the different skills
needed to build and maintain a software product in production.

In this section, we will cover some core aspects of the DevOps movement, such as
team composition, roles and responsibilities, and variants of DevOps, which are about
including more functions in this collaboration method. But let's start with a common
consideration covered in DevOps regarding team size.

DevOps team size

When it comes to team size, the Scrum guide says that a team should be small enough to
stay lean but large enough to develop a reasonable number of features in each Sprint. A
common rule of thumb is to have a team of around 10 or fewer people.

This rule of thumb is commonly accepted and has echoes in other stories, such as the
famous two pizzas team, which states that it should be possible to feed the team with two
large pizzas (so, again, roughly fewer than 10 people).

This depends on the logic of links. In a functional team, each team member should have a
link with the others. This means that in a team of 10 people, you will have 90 links. That's

the reason why the team should not grow much above 10, or else you will have too many

internal interactions to manage, which quickly impacts productivity.

But what about the internal team's responsibility?

136 Exploring the Most Common Development Models

Roles and responsibilities in a DevOps team

As is obvious from the name, DevOps aims at blurring the responsibilities between
developers and operations. This does not mean that everybody should be capable of doing
everything; it is more about having a shared goal.

One of the most hateful dynamics in IT teams is the lack of accountability in case of issues.

The most commonly involved teams are Ops, who are the operations and system
engineers responsible for the infrastructure (and for the uptime of production systems),
and Devs, which are, well, the developers, of course.

Ops will always blame Devs' buggy code when something goes wrong in production, and
Devs will throw code at Ops for releasing without caring about the release outcome, to the
battle cry of works on my machine.

While these dynamics are purposefully exaggerated, you can agree that the relationship
between Devs and Ops is not always the best. DevOps starts here. Everybody is
accountable for production - you build it, you run it.

This means that the team (and the individuals) must shift from a skill perspective (I'm

a specialist only accountable for my limited piece) to a product perspective (my first
responsibility is to have a fully functional product in production, and I will use my skills
for this goal). The goal of this is to build high-quality products (everybody is committed
to a fully functional production service) in less time (you eliminate handovers between
different departments).

Taking apart the philosophy and motivations behind DevOps, there are some direct
technological impacts, which can be seen both as a prerequisite and fundamental benefit
of adopting DevOps:

« Pervasive automation, also known as infrastructure as code: Everything, including
environment definitions, should be declarative, versioned (usually in a code
versioning system such as Git), and repeatable. This avoids drifting (environments
strictly adhere to the expected configurations) and reduces the time for recovering
from failures (it's easy to spin up new copies of the environment). This is something
usually driven by the team members with prevalent Ops skills. It is common, in this
regard, to see a shift toward Site reliability engineering practices, meaning that
Ops will intentionally use an increasing part of their time to develop automation
and other production support tools, instead of doing exclusively production-related
tasks (even manually).

Understanding DevOps and its siblings 137

« Shifting quality into software development: This means embedding all the
feedback coming from production exposure into software development. This often
means increasing observability (to support troubleshooting and performance tuning
in production), improving code testing (to reduce the defects found in production),
and everything that's necessary for safer, high-quality production releases (such
as automated rollbacks in case of failures, supporting auto-scaling, and
modularizing releases).

It is now safe to try to extend this philosophy beyond Devs and Ops.

Devs, Ops, and more

It is natural to try to extend such good practices, such as borderless collaboration (breaking
silos) and tooling support (automating everything) beyond development and operations.

DevSecOps is a clear example of that. This is all about shifting security concerns into all
phases of product development. This means, of course, integrating security specialists in the
DevOps team. Very often, the approach to security is to run specific tests against the finished
product soon before (or shortly after) the production release. The result is that, often, it's too
late and maybe you don't have the time (or it's costly) to fix the security findings.

At the opposite end, DevSecOps impacts the production process in several ways. The first

is to embed best practices in the development of code, then to automate testing against
security principles and rules, and lastly, continuously check compliance with those principles
as part of production operation practices. This extension is particularly well accepted in
highly regulated environments (such as banks, government institutions, and healthcare), and
it has a positive impact in terms of the time to market and overall security.

BizDevOps is another variant, breaking another wall and making business owners
(analysts, budget owners, and even marketing) part of the team. The collaboration
model used here is less structured than with Devs and Ops (and security, if you want),
since some of the activities are not perfectly overlapped, nor comprehensible between
technicians and business people.

However, if you think about it, Agile methodologies (and DevOps, by extension)
inherently encourage cooperation with business by emphasizing short and frequent
feedback loops, and openness to changes in the product life cycle. What's probably a
distinct characteristic of BizDevOps is the crossed visibility on KPIs.

138 Exploring the Most Common Development Models

This includes the technical team having insights into business KPIs (things such as budget,
the number of users, sales trends, and more) in order to try to figure out how technical
choices (new releases, changes in the infrastructure, and resource efficiency) impact on it.
And it's also true the other way around; that is, the business team could have a look at the
technical teams' tuning wheels (the size of the team, resources, and the number of changes)
and how they impact the end-to-end process, in terms of development speed, costs, and
SO on.

Lastly, NoOps is a trending topic, gaining visibility as a result of the assonance with
DevOps. As it's easy to imagine, the idea here is to get rid of the Operations team
completely. While it is theoretically possible, as a result of using heavily automated
environments such as Platform as a Service and Cloud (there is more on this in Chapter
9, Designing Cloud-Native Architectures), to have developers capable of basic Ops tasks,
such as the provisioning of new environments and deployments, I strongly believe NoOps
is a dead end (at least for the foreseeable future). It can be applied when reducing Ops
resources in small contexts (such as serverless applications; this topic will be discussed in
Chapter 9, Designing Cloud-Native Architectures), but this seems more like outsourcing.
You basically do not need to care about the infrastructure because someone else is taking
care of it for you (a cloud provider, or maybe another department).

Personally, I feel such an approach is completely the opposite of DevOps. You will end up
having a huge gap between platform users (Devs) and the team running the infrastructure
(Ops, which are indeed not even part of the project).

DevOps and the bigger organization

A model that is commonly seen as a large-scale implementation of DevOps is the
Spotify development model, which is famous because it has been created and used in the
homonym company building the music streaming app.

Even though, in their seminal work, theorized in a publicly available paper entitled
Scaling Agile @ Spotify, there is no mention of the word DevOps, you can recognize some
common principles.

You will find the link to the full paper in the Further reading section. For now, it's enough
to consider that DevOps must solve the conflicting needs of having a multidisciplinary
team focused on delivery (and production quality) with knowledge and best practice
sharing. In the Spotify model, this is resolved with a matrix organization, in which
individuals belong to one team (so-called squads and tribes) with product-delivery
purposes but share interests with people of the same skills (such as DBAs or frontend
developers) for knowledge sharing and personal growth purposes (in the so-called
chapters and guilds).

Understanding DevOps and its siblings 139

The Spotity model suggests a number of other mechanisms for boosting collaboration. It's
an interesting point of view and gives some practical advice. However, considering that
every organization is different, and has different challenges and strengths, so the first piece
of advice is flexibility. No model will simply work out of the box; you have to look at the
company's objectives and people skills and keep adapting to changing conditions.

Pros and cons of DevOps

We anticipated some impacts of DevOps, both in positive and negative ways, in the
previous sections. However, to summarize, here are some advantages of adopting a
DevOps model:

o It's a high-performance methodology, meaning that, when working properly, it
enables us to deliver high-quality software frequently. Hence, it's rapidly responding
to changing conditions, such as new requirements or production issues.

o It copes well (and often is seen as a requirement) with modern architectures, such as
cloud-based and microservices applications.

o It's challenging and rewarding for team members, meaning that there is a lot
of room for learning, as each team member can easily enrich his/her skills
and responsibilities.

The disadvantages can be summarized as follows:

o It's a huge paradigm shift and can be hard to accept for more traditional
organizations, as it requires many people to get out of their comfort zone and start
thinking about their role in a different way (stretching everybody's responsibilities).

o It may be difficult to map from an organizational point of view, as it will
require breaking the traditional silos and setting up cross-department, product-
oriented teams.

o It requires highly skilled and motivated team members. It may be stressful in the
long term.

With this section, we have completed our overview of DevOps.

We have seen what the founding principles of such a methodology are and why it claims
to boost efficiency, along with some of the variants, such as DevSecOps.

In the next section, we will have a look at some examples and case studies.

140 Exploring the Most Common Development Models

Case studies and examples

In this section, we will model an ideal Product Backlog in the Scrum way, applied to our
mobile payments example.

The official Scrum guide does not provide any example of a Product Backlog, and there
are no standards as regards the fields that should be included. Based on my personal
experience, a Product Backlog should look like this:

ID DESCRIPTION STORY CATEGORY PRIORITY DEPENDENCIES EFFORT NOTE

57| Credential Validation Account Management Feature Medium -~ 36,17 10 See doc hitp://inranet/xyz

73| Payment rollback Payment Feature Medium - 22 10 -

74| Recipient selection performances Payment Fix High -~ 15 |Check data collected from production
49| Social Login Account Management| Enhancement | Low - 24 TBD

Figure 5.5 - Mobile payments Product Backlog

This is, of course, just a small subset, but several considerations can be made:

 Items are identified by ID and DESCRIPTION: Most likely, ID will link to a
detailed requirements document or at least a more detailed description. Also, every
item is likely categorized as part of a bigger user STORY. As discussed previously,
User Story Mapping is a different way to visualize this kind of relationship.

« Items are categorized: Usually, at least features and fixes are categorized, while
more types, such as enhancements and technical terms (for things such as
refactoring and other internal tasks), may be used.

» Dependencies: This is a way to help choose items through the links to other items.

« Effort: This is something that may be roughly evaluated when adding items to the
backlog. However, this is likely to change over time when more details will be known.

You can see some similarities with the requirements template seen in Chapter 2, Software
Requirements - Collecting, Documenting, Managing, and indeed the goals are similar.
However, a different level of detail is evident, as those two artifacts have different goals in
the project cycle.

With this simple example, we have covered all the topics relevant to this chapter.

Summary

In this chapter, we have seen a complete overview of the development models. Starting
with the more traditional approaches, such as Code and Fix and Waterfall, we then moved
to the core of the chapter, focusing on Agile.

Further reading 141

As we have seen, Agile is a broad term, including more structured frameworks (such
as Scrum) and other tools and best practices (such as Lean and some other techniques,
such as Kanban), which can be mixed and matched to better suit the needs of other
projects. As a last big topic, we discussed DevOps (and some extensions of it). While
not being a well-codified practice, the huge potential of this approach is clear, which is
now seeing widespread adoption in many innovative projects. DevOps, indeed, is the
prerequisite for some advanced architectures that we will see in the forthcoming
chapters, such as microservices.

In the next chapter, we will focus on Java architectural patterns. We will cover some
essential topics, including multi-tier architectures, encapsulation, and practical tips
regarding performance and scalability.

Further reading

o The pros and cons of Waterfall Software Development (https://www.dcsl.com/
pros-cons-waterfall-software-development/), DCSL GuideSmiths

o The Waterfall Model: Advantages, disadvantages, and when you should use it
(https://developer.ibm.com/articles/waterfall-model-
advantages-disadvantages/), by Aiden Gallagher, Jack Dunleavy, and
Peter Reeves

o The Waterfall model: Advantages and disadvantages (https://www.blocshop.
io/blog/waterfall-advantages-disadvantages/), Blocshop

+ The Agile Manifesto (https://agilemanifesto.org), by Kent Beck, Mike
Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,
James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeftries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas

« Lean Software Development: An Agile Toolkit, Mary Poppendieck and Tom
Poppendieck, Pearson Education (2003)

o Implementing Lean Software Development: From Concept to Cash, Mary and Tom
Poppendieck, Pearson Education (2006)

o Lean Software Development in Action, Andrea Janes and Giancarlo Succi, Springer
Berlin Heidelberg (2014)

o Agile Metrics in Action: How to measure and improve team performance, Christopher
Davis, Manning Publications (2015)

142

Exploring the Most Common Development Models

The Surprising Power of Online Experiments (https://hbr.org/2017/09/
the-surprising-power-of-online-experiments), by Ron Kohavi and
Stefan Thomke

The Art of Lean Software Development, Curt Hibbs, Steve Jewett, and Mike Sullivan,
O'Reilly Media (2009).

The Scrum guide (https://www.scrumguides.org), by Jeff Sutherland and
Ken Schwaber

Scrum: The Art of Doing Twice the Work in Half the Time, Jeff Sutherland, Random
House (2014)

9 retrospective techniques that won't bore your team to death (https://www.
atlassian.com/blog/teamwork/revitalize-retrospectives-
fresh-techniques), by Sarah Goft-Dupont

6 Effective Sprint Retrospective Techniques (https://www.parabol.co/
resources/agile-sprint-retrospective-ideas), Parabol

DevOpsCulture (https://martinfowler.com/bliki/DevOpsCulture.
html), by Rouan Wilsenach

Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds (https://blog.
crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf), by
Henrik Kniberg and Anders Ivarsson

Create Your Successful Agile Project: Collaborate, Measure, Estimate, Deliver, Johanna
Rothman, Pragmatic Bookshelf (2017)

Operations Anti-Patterns, DevOps Solutions, Jeffery D. Smith, Manning
Publications (2020)

Iszzued to Hichelle Siebert - {nziebert@netline.conl

Section 2:
Software
Architecture
Patterns

Are there any recognizable architecture patterns or reusable best practices? In this section
of the book, we will get an overview of different kinds of architectural patterns and their
most widespread implementation in Java.

We will discuss some basic Java architectural patterns, such as encapsulation, MVC,

and event-driven. Another big topic will be middleware and frameworks, including JEE
application servers, as well as frameworks for microservices implementation. We will also
deal with integration and business automation, which are two other common middleware
concepts. This section will be completed with elements of cloud-native architectures,
concepts of user interfaces, and an overview of data storage and retrieval.

This section comprises the following chapters:

Chapter 6, Exploring Essential Java Architectural Patterns

Chapter 7, Exploring Middleware and Frameworks

Chapter 8, Designing Application Integration and Business Automation
Chapter 9, Designing Cloud-Native Architectures

Chapter 10, Implementing User Interaction

Chapter 11, Dealing with Data

64157 367EF198

6

Exploring Essential
Java Architectural
Patterns

In the last chapter, you had an overview of the most common development models, from
the older (but still used) Waterfall model to the widely used and appreciated DevOps
and Agile.

In this chapter, you will have a look at some very common architectural patterns. These
architectural definitions are often considered basic building blocks that are useful to know
about in order to solve common architectural problems.

You will learn about the following topics in this chapter:

« Encapsulation and hexagonal architectures

+ Learning about multi-tier architectures

« Exploring Model View Controller

« Diving into event-driven and reactive approaches
« Designing for large-scale adoption

« Case studies and examples

146 Exploring Essential Java Architectural Patterns

After reading this chapter, you'll know about some useful tools that can be used to
translate requirements into well-designed software components that are easy to develop
and maintain. All the patterns described in this chapter are, of course, orthogonal to the
development models that we have seen in the previous chapters; in other words, you can
use all of them regardless of the model used.

Let's start with one of the most natural architectural considerations: encapsulation and
hexagonal architectures.

Encapsulation and hexagonal architectures

Encapsulation is a concept taken for granted by programmers who are used to working
with object-oriented programming and, indeed, it is quite a basic idea. When talking
about encapsulation, your mind goes to the getters and setters methods. To put it simply,
you can hide fields in your class, and control how the other objects interact with them.
This is a basic way to protect the status of your object (internal data) from the outside
world. In this way, you decouple the state from the behavior, and you are free to switch the
data type, validate the input, change formats, and so on. In short, it's easy to understand
the advantages of this approach.

However, encapsulation is a concept that goes beyond simple getters and setters. I
personally find some echoes of this concept in other modern approaches, such as APIs and
microservices (more on this in Chapter 9, Designing Cloud-Native Architectures). In my
opinion, encapsulation (also known as information hiding) is all about modularization, in
that it's about having objects talk to each other by using defined contracts.

If those contracts (in this case, normal method signatures) are stable and generic enough,
objects can change their internal implementation or can be swapped with other objects
without breaking the overall functionality. That is, of course, a concept that fits nicely with
interfaces. An interface can be seen as a super contract (a set of methods) and a way to
easily identify compatible objects.

In my personal view, the concept of encapsulation is extended with the idea of hexagonal
architectures. Hexagonal architectures, theorized by Alistair Cockburn in 2005, visualize
an application component as a hexagon. The following diagram illustrates this:

Encapsulation and hexagonal architectures 147

Js)depy

(Domain Model)

Adapter

Figure 6.1 — Hexagonal architecture schema

As you can see in the preceding diagram, the business logic stays at the core of
this representation:

« Core: The core can be intended to be the domain model, as seen in Chapter 4, Best
Practices for Design and Development. It's the real distinctive part of your application
component — the one solving the business problem.

o Port: Around the core, the ports are represented. The domain model uses the ports
as a way to communicate with other application components, being other modules or
systems (such as databases and other infrastructures). The ports are usually mapped
to use cases of the module itself (such as sending payments). However, more technical
interpretations of ports are not unusual (such as persisting to a database).

« Adapter: The layer outside the ports represents the adapters. The Adapter is a well-
known pattern in which a piece of software acts as an interpreter between two
different sides. In this case, it translates from the domain model to the outside world,
and vice versa, according to what is defined in each port. While the diagram is in
the shape of a hexagon, that's not indicative of being limited to six ports or adapters.
That's just a graphical representation, probably related to the idea of representing the
ports as discrete elements (which is hard to do if you represent the layers as concentric
circles). The hexagonal architecture is also known as Ports and Adapters.

148 Exploring Essential Java Architectural Patterns

Important Note:

There is another architectural model implementing encapsulation that is often
compared to hexagonal architectures: Onion architectures. Whether the
hexagonal architecture defines the roles mentioned earlier, such as core, ports,
and adapters, the Onion architecture focuses the modeling on the concept of
layers. There is an inner core (the Domain layer) and then a number of layers
around it, usually including a repository (to access the data of the Domain
layer), services (to implement business logic and other interactions), and a
presentation layer (for interacting with the end user or other systems). Each
layer is supposed to communicate only with the layer above itself.

Hexagonal architectures and Domain Driven Design

Encapsulation is a cross-cutting concern, applicable to many aspects of a software
architecture, and hexagonal architectures are a way to implement this concept. As we have
seen, encapsulation has many touchpoints with the concept of Domain-Driven Design
(DDD). The core, as mentioned, can be seen as the domain model in DDD. The Adapter
pattern is also very similar to the concept of the Infrastructure layer, which in DDD is the
layer mapping the domain model with the underlying technology (and abstracting such
technology details).

It's then worth noticing that DDD is a way more complete approach, as seen in Chapter

4, Best Practices for Design and Development, tackling things such as defining a language
for creating domain model concepts and implementing some peculiar use cases (such as
where to store data, where to store implementations, how to make different models talk to
each other). Conversely, hexagonal architectures are a more practical, immediate approach
that may directly address a concern (such as implementing encapsulation in a structured
way), but do not touch other aspects (such as how to define the objects in the core).

Encapsulation and microservices

While we are going to talk about microservices in Chapter 9, Designing Cloud-Native
Architectures, I'm sure you are familiar with, or at least have heard about, the concept of
microservices. In this section, it's relevant to mention that the topic of encapsulation is
one of the core reasonings behind microservices. Indeed, a microservice is considered
to be a disposable piece of software, easy to scale and to interoperate with other similar
components through a well-defined APIL.

Learning about multi-tier architectures 149

Moreover, each microservice composing an application is (in theory) a product, with a
dedicated team behind it and using a set of technologies (including the programming
language itself) different from the other microservices around it. For all those reasons,
encapsulation is the basis of the microservices applications, and the concepts behind it
(as the ones that we have seen in the context of hexagonal architectures) are intrinsic
in microservices.

So, as you now know, the concept of modularization is in some way orthogonal to
software entities. This need to define clear responsibilities and specific contracts is a
common way to address complexity, and it has a lot of advantages, such as testability,
scaling, extensibility, and more. Another common way to define roles in a software system
is the multi-tier architecture.

Learning about multi-tier architectures

Multi-tier architectures, also known as n-tier architectures, are a way to categorize
software architectures based on the number and kind of tiers (or layers) encompassing
the components of such a system. A tier is a logical grouping of the software components,
and it's usually also reflected in the physical deployment of the components. One way

of designing applications is to define the number of tiers composing them and how they
communicate with each other. Then, you can define which component belongs to which
tier. The most common types of multi-tier applications are defined in the following list:

o The simplest (and most useless) examples are single-tier applications, where
every component falls into the same layer. So, you have what is called a
monolithic application.

« Things get slightly more interesting in the next iteration, that is, two-tier applications.
These are commonly implemented as client-server systems. You will have a layer
including the components provided to end users, usually through some kind of
graphical or textual user interfaces, and a layer including the backend systems, which
normally implement the business rules and the transactional functionalities.

 Three-tier applications are a very common architectural setup. In this kind of
design, you have a presentation layer taking care of interaction with end users. We
also have a business logic layer implementing the business logic and exposing APIs
consumable by the presentation layer, and a data layer, which is responsible for
storing data in a persistent way (such as in a database or on a disk).

150 Exploring Essential Java Architectural Patterns

o More than three layers can be contemplated, but that is less conventional, meaning
that the naming and roles may vary. Usually, the additional tiers are specializations
of the business logic tier, which was seen in the previous point. An example of
a four-tier application was detailed in Chapter 4, Best Practices for Design and

Development, when talking about the layered architecture of DDD.

The following diagram illustrates the various types of multi-tier architectures:

«e®p 9 «® L J)
P44 PY 1Y PY Y9 PY Y9
Llearc Users Users Users
- ; Presentation Presentation
Presentation Presentation
N (clients) (Frontend)
Loagic Application
5 APIs + Logic oP
Logic + Data + Objects
Data ‘ :
(SerVer) Domain
Single tier Two tier Three tier Four tier

(aka monolith) (aka client server) (as per DDD)

Figure 6.2 — Multi-tier architectures

The advantages of a multi-tier approach are similar to those that you can achieve with the
modularization of your application components (more on this in Chapter 9, Designing
Cloud-Native Architectures). Some of the advantages are as follows:

« The most relevant advantage is probably scalability. This kind of architecture allows
each layer to scale independently from each other. So, if you have more load on the
business (or frontend, or database) layer, you can scale it (vertically, by adding more
computational resources, or horizontally, by adding more instances of the same
component) without having a huge impact on the other components. And that is
also linked to increased stability overall: an issue on one of the layers is not so likely
to influence the other layers.

« Another positive impact is improved testability. Since you are forced to define
clearly how the layers communicate with each other (such as by defining
some APIs), it becomes easier to test each layer individually by using the same
communication channel.

Exploring Model View Controller 151

« Modularity is also an interesting aspect. Having layers talking to each other will
enforce a well-defined API to decouple each other. For this reason, it is possible
(and is very common) to have different actors on the same layer, interacting with
the other layer. The most widespread example here is related to the frontend. Many
applications have different versions of the frontend (such as a web GUI and a mobile
app) interacting with the same underlying layer.

« Last but not least, by layering your application, you will end up having more
parallelization in the development process. Sub teams can work on a layer without
interfering with each other. The layers, in most cases, can be released individually,
reducing the risks associated with a big bang release.

There are, of course, drawbacks to the multi-tier approach, and they are similar to the
ones you can observe when adopting other modular approaches, such as microservices.
The main disadvantage is to do with tracing.

It may become hard to understand the end-to-end path of each transaction, especially
(as is common) if one call in a layer is mapped to many calls in other layers. To mitigate
this, you will have to adopt specific monitoring to trace the path of each call; this is
usually done by injecting unique IDs to correlate the calls to each other to help when
troubleshooting is needed (such as when you want to spot where the transactions slow
down) and in general to give better visibility into system behavior. We will study this
approach (often referred to as tracing or observability) in more detail in Chapter 9,
Designing Cloud-Native Architectures.

In the next section, we will have a look at a widespread pattern: Model View Controller.

Exploring Model View Controller

At first glance, Model View Controller (MVC) may show some similarities with the
classical three-tier architecture. You have the classification of your logical objects into
three kinds and a clear separation between presentation and data layers. However, MVC
and the three-tier architecture are two different concepts that often coexist.

The three-tier architecture is an architectural style where the elements (presentation,
business, and data) are split into different deployable artifacts (possibly even using
different languages and technologies). These elements are often executed on different
servers in order to achieve the already discussed goals of scalability, testability, and so on.

On the other hand, MVC is not an architectural style, but a design pattern. For this reason,
it does not suggest any particular deployment model regarding its components, and indeed,
very often the Model, View, and Controller coexist in the same application layer.

152 Exploring Essential Java Architectural Patterns

Taking apart the philosophical similarity and differences, from a practical point of view,
MVC is a common pattern for designing and implementing the presentation layer in a
multi-tier architecture.

In MVC, the three essential components are listed as follows:

o Model: This component takes care of abstracting access to the data used by the
application. There is no logic to the data presented here.

+ View: This component takes care of the interaction with the users (or other external
systems), including the visual representation of data (if expected).

o Controller: This component receives the commands (often mediated by the view)
from the users (or other external systems) and updates the other two components
accordingly. The Controller is commonly seen as a facilitator (or glue) between the
Model and View components.

The following diagram shows you the essential components of MVC:

Users

Displays

Controller

Figure 6.3 - MVC components

Another difference between MVC and the three-tier architecture is clear from the
interaction of the three components described previously: in a three-tier architecture, the
interaction is usually linear; that is, the presentation layer does not interact directly with
the data layer. MVC classifies the kind and goal of each interaction but also allows all
three components to interact with each other, forming a triangular model.

Exploring Model View Controller 153

MVC is commonly implemented by a framework or middleware and is used by the
developer, specific interfaces, hooks, conventions, and more.

In the real world, this pattern is commonly implemented either at the server side or the
client side.

Server-side MVC

The Java Enterprise Edition (JEE) implementation is a widely used example (even if not
really a modern one) of an MVC server-side implementation. In this section, we are going
to mention some classical Java implementations of web technologies (such as JSPs and
servlets) that are going to be detailed further in Chapter 10, Implementing User Interaction.

In terms of relevance to this chapter, it's worthwhile knowing that in the JEE world, the
MVC model is implemented using Java beans, the view is in the form of JSP files, and the
controller takes the form of servlets, as shown in the following diagram:

Users

Displays

Servlets

(Controller)

Figure 6.4 - MVC with JEE

As you can see, in this way, the end user interacts with the web pages generated by the
JSPs (the View), which are bound to the Java Beans (the Model) keeping the values
displayed and collected. The overall flow is guaranteed by the Servlets (the Controller),
which take care of things such as the binding of the Model and View, session handling,
page routing, and other aspects that glue the application together. Other widespread Java
MVC frameworks, such as Spring MVC, adopt a similar approach.

154 Exploring Essential Java Architectural Patterns

Client-side MVC

MVC can also be completely implemented on the client side, which usually means that
all three roles are played by a web browser. The de facto standard language for client-side
MVC is JavaScript.

Client-side MVC is almost identical to single-page applications. We will see more about
single-page applications in Chapter 10, Implementing User Interaction, but basically, the
idea is to minimize page changes and full-page reloads in order to provide a near-native
experience to users while keeping the advantages of a web application (such as simplified
distribution and centralized management).

The single-page applications approach is not so different from server-side MVC. This
technology commonly uses a templating language for views (similar to what we have seen
with JSPs on the server side), a model implementation for keeping data and storing it in
local browser storage or remotely calling the remaining APIs exposed from the backend,
and controllers for navigation, session handling, and more support code.

In this section, you learned about MVC and related patterns, which are considered a
classical implementation for applications and have been useful for nicely setting up all the
components and interactions, separating the user interface from the implementation.

In the next section, we will have a look at the event-driven and reactive approaches.

Diving into event-driven and reactive
approaches

Event-driven architecture isn't a new concept. My first experiences with it were related to
GUI development (with Java Swing) a long time ago. But, of course, the concept is older
than that. And the reason is that events, meaning things that happen, are a pretty natural
phenomenon in the real world.

There is also a technological reason for the event-driven approach. This way of
programming is deeply related to (or in other words, is most advantageous when used
together with) asynchronous and non-blocking approaches, and these paradigms are
inherently efficient in terms of the use of resources.

Here is a diagram representing the event-driven approach:

Diving into event-driven and reactive approaches 155

Handler Code

Result

Event

Figure 6.5 — Event-driven approach

As shown in the previous diagram, the whole concept of the event-driven approach is to
have our application architecture react to external events. When it comes to GUIs, such
events are mostly user inputs (such as clicking a button, entering data in text fields, and so
on), but events can be many other things, such as changes in the price of a stock option, a
payment transaction coming in, data being collected from sensors, and so on.

Another pattern worth mentioning is the actor model pattern, which is another way to
use messaging to maximize the concurrency and throughput of a software system.

I like to think that reactive programming is an evolution of all this. Actually, it is
probably an evolution of many different techniques.

It is a bit harder to define reactive, probably because this approach is still relatively new
and less widespread. Reactive has its roots in functional programming, and it's a complete
paradigm shift from the way you think about and write your code right now. While it's out
of the scope of this book to introduce functional programming, we will try to understand
some principles of reactive programming with the usual goal of giving you some more
tools you can use in your day-to-day architect life and that you can develop further
elsewhere if you find them useful for solving your current issues.

But first, let's start with a cornerstone concept: events.

Defining events, commands, and messages

From a technological point of view, an event can be defined as something that changes
the status of something. In an event-driven architecture, such a change is then propagated
(notified) as a message that can be picked up by components interested in that kind of event.

For this reason, the terms event-driven and message-driven are commonly used
interchangeably (even if the meaning may be slightly different).

So, an event can be seen as a more abstract concept to do with new information, while

a message can be seen as how this information is propagated throughout our system.
Another core concept is the command. Roughly speaking, a command is the expression
of an action, while an event is an expression of something happening (such as a change in
the status of something).

156 Exploring Essential Java Architectural Patterns

So, an event reflects a change in data (and somebody downstream may need to be notified
of the change and need to do something accordingly), while a command explicitly asks for
a specific action to be done by somebody downstream.

Again, generally speaking, an event may have a broader audience (many consumers might
be interested in it), while a command is usually targeted at a specific system. Both types of
messages are a nice way to implement loose coupling, meaning it's possible to switch at any
moment between producer and consumer implementations, given that the contract (the
message format) is respected. It could be even done live with zero impact on system uptime.
That's why the usage of messaging techniques is so important in application design.

Since these concepts are so important and there are many different variations on brokers,
messages, and how they are propagated and managed, we will look at more on messaging
in Chapter 8, Designing Application Integration and Business Automation. Now, let's talk
about the event-driven approach in detail.

Introducing the event-driven pattern and event-driven
architecture

The event-driven pattern is a pattern and architectural style focused on reacting to things
happening around (or inside of) our application, where notifications of actions to be taken
appear in the form of events.

In its simplest form, expressed in imperative languages (as is widespread in embedded
systems), event-driven architecture is managed via infinite loops in code that continuously
poll against event sources (queues), and actions are performed when messages are received.

However, event-driven architecture is orthogonal to the programming style, meaning
that it can be adopted both in imperative models and other models, such as object-
oriented programming.

With regard to Object-Oriented Programming (OOP), there are plenty of Java-based
examples when it comes to user interface development, with a widely known one being
the Swing framework. Here you have objects (such as buttons, windows, and other
controls) that provide handlers for user events. You can register one or more handlers
(consumers) with those events, which are then executed.

From the point of view of the application flow, you are not defining the order in which the
methods are executing. You are just defining the possibilities, which are then executed and
composed according to the user inputs.

Diving into event-driven and reactive approaches 157

But if you abstract a bit, many other aspects of Java programming are event-driven.
Servlets inherently react to events (such as an incoming HTTP request), and even error
handling, with try-catch, defines the ways to react if an unplanned event occurs. In those
examples, however, the events are handled internally by the framework, and you don't
have a centralized middleware operating them (such as a messaging broker or queue
manager). Events are simply a way to define the behavior of an application.

Event-driven architecture can be extended as an architectural style. Simply put, an
event-driven architecture prescribes that all interactions between the components of
your software system are done via events (or commands). Such events, in this case, are
mediated by a central messaging system (a broker, or bus).

In this way, you can extend the advantages of the event-driven pattern, such as loose
coupling, better scalability, and a more natural way to represent the use case, beyond a
single software component. Moreover, you will achieve the advantage of greater visibility
(as you can inspect the content and number of messages exchanged between the pieces
of your architecture). You will also have better manageability and uptime (because you
can start, stop, and change every component without directly impacting the others, as a
consequence of loose coupling).

Challenges of the event-driven approach

So far, we have seen the advantages of the event-driven approach. In my personal opinion,
they greatly outweigh the challenges that it poses, so I strongly recommend using this
kind of architecture wherever possible. As always, take into account that the techniques
and advice provided in this book are seldom entirely prescriptive, so in the real world I bet
you will use some bits of the event-driven pattern even if you are using other patterns and
techniques as your main choice.

However, for the sake of completeness, I think it is worth mentioning the challenges I have
faced while building event-driven architectures in the past:

» Message content: It's always challenging to define what should be inside a message.
In theory, you should keep the message as simple and as light as possible to avoid
hogging the messaging channels and achieve better performance. So, you usually
have only a message type and references to data stored elsewhere.

158

Exploring Essential Java Architectural Patterns

However, this means that downstream systems may not have all the data needed for
the computation in the message, and so they would complete the data from external
systems (typically, a database). Moreover, most of the messaging frameworks and
APIs (such as JMS) allow you to complete your message with metadata, such as
headers and attachments. I've seen endless discussions about what should go into

a message and what the metadata is. Of course, I don't have an answer here. My
advice, as always, is to keep it as simple as possible.

Message format: Related to the previous point, the message format is also very
relevant. Hence, after you establish what information type should be contained in
each message, the next step is to decide the shape this information should have.
You will have to define a message schema, and this should be understandable by
each actor. Also, message validation could be needed (to understand whether each
message is a formally valid one), and a schema repository could be useful, in order
to have a centralized infrastructure that each actor can access to extract metadata
about how each message should be formatted.

Transactional behavior: The write or read of a message, in abstract, constitutes
access to external storage (not so different from accessing a database). For this
reason, if you are building a traditional enterprise application, when you are using
messaging, you will need to extend your transactional behavior.

It's a very common situation that if your consumer needs to update the database as
a consequence of receiving a message, you will have a transaction encompassing the
read of the message and the write to the database. If the write fails, you will roll back
the read of the message. In the Java world, you will implement this with a two-phase
commit. While it's a well-known problem and many frameworks offer some
facilities to do this, it's still not a simple solution; it can be hard to troubleshoot (and
recover from) and can have a non-negligible performance hit.

Tracing: If the system starts dispatching many messages between many systems,
including intermediate steps such as message transformations and filtering, it may
become difficult to reconstruct a user transaction end to end. This could lead to a
lack of visibility (from a logical/use case point of view) and make troubleshooting
harder. However, you can easily solve this aspect with the propagation of transaction
identifiers in messages and appropriate logging.

Security: You will need to apply security practices at many points. In particular,
you may want to authenticate the connections to the messaging system (both for
producing and consuming messages), define access control for authorization (you
can read and write only to authorized destinations), and even sign messages to
ensure the identity of the sender. This is not a big deal, honestly, but is one more
thing to take into account.

Diving into event-driven and reactive approaches 159

As you can see, the challenges are not impossible to face, and the advantages will
probably outweigh them for you. Also, as we will see in Chapter 9, Designing Cloud-Native
Architectures, many of these challenges are not exclusive to event-driven architecture, as
they are also common in distributed architectures such as microservices.

Event-driven and domain model

We have already discussed many times the importance of correctly modeling a business
domain, and how this domain is very specific to the application boundaries. Indeed, in
Chapter 4, Best Practices for Design and Development, we introduced the idea of bounded
context. Event-driven architectures are dealing almost every time with the exchange of
information between different bounded contexts.

As already discussed, there are a number of techniques for dealing with such kinds of
interactions between different bounded contexts, including the shared kernel, customer
suppliers, conformity, and anti-corruption layer. As already mentioned, unfortunately, a
perfect approach does not exist for ensuring that different bounded contexts can share
meaningful information but stay correctly decoupled.

My personal experience is that the often-used approach here is the shared kernel. In
other words, a new object is defined and used as an event format. Such an object contains
the minimum amount of information needed for the different bounded contexts to
communicate. This does not necessarily mean that the communication will work in every
case and no side effects will occur, but it's a solution good enough in most cases.

In the next section, we are going to touch on a common implementation of the event-
driven pattern, known as the actor model.

Building on the event-driven architecture - the actor model

The actor model is a stricter implementation of the event-driven pattern. In the actor
model, the actor is the most elementary unit of computation, encapsulating the state and
behavior. An actor can communicate with other actors only through messages.

An actor can create other actors. Each actor encapsulates its internal status (no actor can
directly manipulate the status of another actor). This is usually a nice and elegant way to
take advantage of multithreading and parallel processing, thereby maintaining integrity

and avoiding explicit locks and synchronizations.

160 Exploring Essential Java Architectural Patterns

In my personal experience, the actor model is a bit too prescriptive when it comes to
describing bigger use cases. Moreover, some requirements, such as session handling and
access to relational databases, are not an immediate match with the actor model's logic
(though they are still implementable within it). You will probably end up implementing
some components (maybe core ones) with the actor model while having others that

use a less rigorous approach, for the sake of simplicity. The most famous actor model
implementation with Java is probably Akka, with some other frameworks, such as Vert.x,
taking some principles from it.

So far, we have elaborated on generic messaging with both the event-driven approach and
the actor model.

It is now important, for the purpose of this chapter, to introduce the concept of streaming.

Introducing streaming

Streaming has grown more popular with the rise of Apache Kafka even if other popular
alternatives, such as Apache Pulsar, are available. Streaming shares some similarities with
messaging (there are still producers, consumers, and messages flowing, after all), but it
also has some slight differences.

From a purely technical point of view, streaming has one important difference compared
with messaging. In a streaming system, messages persist for a certain amount of time (or,
if you want, a specified number of messages can be maintained), regardless of whether
they have been consumed or not.

This creates a kind of sliding window, meaning that consumers of a streaming system

can rewind messages, following the flow from a previous point to the current point. This
means that some of the information is moved from the messaging system (the broker, or
bus) to the consumers (which have to maintain a cursor to keep track of the messages read
and can move back in time).

This behavior also enables some advanced use cases. Since consumers can see a
consolidated list of messages (the stream, if you like), complex logic can be applied to
such messages. Different messages can be combined for computation purposes, different
streams can be merged, and advanced filtering logic can be implemented. Moreover, the
offloading of part of the logic from the server to the consumers is one factor that enables
the management of high volumes of messages with low latencies, allowing for near real-
time scenarios.

Given those technical differences, streaming also offers some conceptual differences that
lead to use cases that are ideal for modeling with this kind of technology.

Diving into event-driven and reactive approaches 161

With streams, the events (which are then propagated as messages) are seen as a whole
information flow as they usually have a constant rate. And moreover, a single event is
normally less important than the sequence of events. Last but not least, the ability to
rewind the event stream leads to better consistency in distributed environments.

Imagine adding more instances of your application (scaling). Each instance can
reconstruct the status of the data by looking at the sequence of messages collected

until that moment, in an approach commonly defined as Event Sourcing. This is also a
commonly used pattern to improve resiliency and return to normal operations following
a malfunction or disaster event. This characteristic is one of the reasons for the rising
popularity of streaming systems in microservice architectures.

Touching on reactive programming

I like to think of reactive programming as event-driven architecture being applied to data
streaming. However, I'm aware that that's an oversimplification, as reactive programming
is a complex concept, both from a theoretical and technological point of view.

To fully embrace the benefits of reactive programming, you have to both master the tools
for implementing it (such as RxJava, Vert.x, or even Bacon]S) and switch your reasoning
to the reactive point of view. We can do this by modeling all our data as streams (including
changes in variables content) and writing our code on the basis of a declarative approach.

Reactive programming considers data streams as the primary construct. This makes the
programming style an elegant and efficient way to write asynchronous code, by observing
streams and reacting to signals. I understand that this is not easy at all to grasp at first glance.

It's also worth noting that the term reactive is also used in the context of reactive systems,
as per the Reactive Manifesto, produced in 2014 by the community to implement
responsive and distributed systems. The Reactive Manifesto focuses on building systems
that are as follows:

» Responsive: This means replying with minimal and predictable delays to inputs (in
order to maximize the user experience).

« Resilient: This means that a failure in one of the components is handled gracefully
and impacts the whole system's availability and responsiveness as little as possible.

« Elastic: This means that the system can adapt to variable workloads, keeping
constant response times.

o Message-driven: This means that systems that adhere to the manifesto use a message-
driven communication model (hence achieving the same goals as described in the
Introducing the event-driven pattern and event-driven architecture section).

162 Exploring Essential Java Architectural Patterns

While some of the goals and techniques of the Reactive Manifesto resonate with the
concepts we have explored so far, reactive systems and reactive programming are
different things.

The Reactive Manifesto does not prescribe any particular approach to achieve the
preceding four goals, while reactive programming does not guarantee, per se, all the
benefits pursued by the Reactive Manifesto.

A bit confusing, I know. So, now that we've understood the differences between a reactive
system (as per the Reactive Manifesto) and reactive programming, let's shift our focus
back to reactive programming.

As we have said, the concept of data streaming is central to reactive programming.
Another fundamental ingredient is the declarative approach (something similar to
functional programming). In this approach, you express what you want to achieve instead
of focusing on all the steps needed to get there. You declare the final result (leveraging
standard constructs such as filter, map, and join) and attach it to a stream of data to which
it will be applied.

The final result will be compact and elegant, even if it may not be immediate in terms
of readability. One last concept that is crucial in reactive programming is backpressure.
This is basically a mechanism for standardizing communication between producers and
consumers in a reactive programming model in order to regulate flow control.

This means that if a consumer can't keep up with the pace of messages received from the
producer (typically because of a lack of resources), it can send a notification about the
problem upstream so that it can be managed by the producer or any other intermediate
entity in the stream chain (in reactive programming, an event stream can be manipulated
by intermediate functions). In theory, backpressure can bubble up to the first producer,
which can also be a human user in the case of interactive systems.

When a producer is notified of backpressure, it can manage the issue in different ways.
The most simple is to slow down the speed and just send less data, if possible. A more
elaborate technique is to buffer the data, waiting for the consumer to get up to speed (for
example, by scaling its resources). A more destructive approach (but one that is effective
nevertheless) is to drop some messages. However, this may not be the best solution in
every case.

With that, we have finished our quick look at reactive programming. I understand that
some concepts have been merely mentioned, and things such as the functional and
declarative approaches may require at least a whole chapter on their own. However, a full
deep dive into the topic is beyond the scope of this book. I hope I gave you some hints

to orient yourself toward the best architectural approach when it comes to message- and
event-centric use cases.

Designing for large-scale adoption 163

In this section, you learned about the basic concepts and terms to do with reactive and
event-driven programming, which, if well understood and implemented, can be used to
create high-performance applications.

In the next section, we will start discussing how to optimize our architecture for
performance and scalability purposes.

Designing for large-scale adoption

So far, in this chapter, we have discussed some widespread patterns and architectural
styles that are well used in the world of enterprise Java applications.

One common idea around the techniques that we have discussed is to organize the code
and the software components not only for better readability, but also for performance
and scalability.

As you can see (and will continue to see) in this book, in current web-scale applications, it
is crucial to think ahead in terms of planning to absorb traffic spikes, minimize resource
usage, and ultimately have good performance. Let's have a quick look at what this all
means in our context.

Defining performance goals

Performance is a very broad term. It can mean many different things, and often you will
want to achieve all performance goals at once, which is of course not realistic.

In my personal experience, there are some main performance indicators to look after, as
they usually have a direct impact on the business outcome:

o Throughput: This is measured as the number of transactions that can be managed
per time unit (usually in seconds). The tricky part here is to define exactly what
a transaction is in each particular context, as probably your system will manage
different transaction types (with different resources being needed for each kind
of transaction). Business people understand this metric instantaneously, knowing
that having a higher throughput means that you will spend less on hardware (or
cloud) resources.

+ Response time: This term means many different things. It usually refers to the time
it takes to load your web pages or the time it takes to complete a transaction. This
has to do with customer satisfaction (the quicker, the better). You may also have
a contractual Service Level Agreement (SLA); for example, your system must
complete a transaction in no more than x milliseconds. Also, you may want to focus
on an average time or set a maximum time threshold.

164 Exploring Essential Java Architectural Patterns

« Elapsed time: This basically means the amount of time needed to complete a
defined chunk of work. This is common for batch computations (such as in big
data or other calculations). This is kind of a mix of the previous two metrics. If you
are able to do more work in parallel, you will spend less on your infrastructure.
You may have a fixed deadline that you have to honor (such as finishing all your
computations before a branch opens to the public).

Performance tuning is definitely a broad topic, and there is no magic formula to

easily achieve the best performance. You will need to get real-world experience by
experimenting with different configurations and get a lot of production traffic, as each
case is different. However, here are some general considerations for each performance goal
that we have seen:

+ To enhance throughput, your best bet is to parallelize. This basically means
leveraging threading where possible. It's unbelievable how often we tend to chain
our calls in a sequential way. Unless it is strictly necessary (because of data), we
should parallelize as much as we can and then merge the results.

This entails, basically, splitting each call wherever possible (by delegating it to
another thread), waiting for all the subcalls to complete in order to join the results
in the main thread, and returning the main thread to the caller. This is particularly
relevant where the subcalls involve calling to external systems (such as via web
services). When parallelizing, the total elapsed time to answer will be equal to the
longest subcall, instead of being the sum of the time of each subcall.

In the next diagram, you can see how parallelizing calls can help in reducing the
total elapsed time needed to complete the execution of an application feature:

Designing for large-scale adoption 165

Time

L Call to Service A 1
| 1

«®p .

P Y ICaII to Service BI

User)

Request I Call to Service C I
| Total Elapsed |
! 1

Sequential Approach

1 Call to Service A 1
| 1
ICaII to Service BI

9y

«dRn

User 1 Call to Service C |

Request I 1
I Total Elapsed |
I 1

Time Parallel Approach

Figure 6.6 - Sequential versus parallel approach

o There should be a physical separation of our service based on the load and the
performance expectations (something greatly facilitated by containers and
microservices architecture). Instead of mixing all your APIs, you may want to
dedicate more resources to the more critical ones (perhaps even dynamically,
following the variation of traffic) by isolating them from the other services.

o For better response times, async is the way to go. After reviewing the previous sections
for advice, I suggest working with your business and functional analysts and fighting
to have everything be as asynchronous as possible from a use case perspective.

166 Exploring Essential Java Architectural Patterns

It is very uncommon to have really strict requirements in terms of checking
everything on every backend system before giving feedback to your users. Your best
bet is to do a quick validation and reply with an acknowledgment to the customer.
You will, of course, need an asynchronous channel (such as an email, a notification,
or a webhook) to notify regarding progression of the transaction. There are
countless examples in real life; for example, when you buy something online, often,
your card funds won't even be checked in the first interaction. You are then notified
by email that the payment has been completed (or has failed). Then, the package

is shipped, and so on. Moreover, optimizing access to data is crucial; caching,
pre-calculating, and de-duplicating are all viable strategies.

« When optimizing for elapsed time, you may want to follow the advice previously
given: parallelizing and optimizing access to data is key. Also, here, you may want to
rely on specialized infrastructure, such as scaling to have a lot of hardware (maybe
in the cloud) and powering it off when it is not needed, or using infrastructures
optimized for input/output. But the best advice is to work on the use case to maximize
the amount of parallelizable work, possibly duplicating part of the information.

We will learn more about performance in Chapter 12, Cross-Cutting Concerns. Let's now
review some key concepts linked to scalability.

Stateless

Stateless is a very recurrent concept (we will see it again in Chapter 9, Designing Cloud-
Native Architectures). It is difficult to define with simple words, however.

Let's take the example of an ATM versus a workstation.

Your workstation is something that is usually difficult to replace. Yes, you have backups
and you probably store some of your data online (in your email inbox, on the intranet, or
on shared online drives). But still, when you have to change your laptop for a new one,
you lose some time ensuring that you have copied any local data. Then, you have to export
and reimport your settings, and so on. In other words, your laptop is very much stateful. It
has a lot of local data that you don't want to lose.

Now, let's think about an ATM. Before you insert your card, it is a perfectly empty
machine. It then loads your data, allows cash withdrawal (or whatever you need), and
then it goes back to the previous (empty) state, ready for the next client to serve. It is
stateless from this point of view. It is also engineered to minimize the impact if something
happens while you are using it. It's usually enough to end your current session and restart
from scratch.

But back to our software architecture: how do we design an architecture to be stateless?

Designing for large-scale adoption 167

The most common ways are as follows:

« Push the state to clients: This can mean having a cookie in the customer browser
or having your APIs carry a token (such as a JWT). Every time you get a request,
you may get to choose the best instance for your software (be it a container, a new
JVM instance, or simply a thread) to handle it — which will it be: the closest to the
customer, the closest to the data, or simply the one with the least amount of load at
that moment?

« Push the state to an external system: You can offload the state to a dedicated
system, such as a distributed cache. Your API (and business logic) only need to
identify the user. All the session data is then loaded from a dedicated system. Any
new instance can simply ask for the session data. Of course, your problem is then
how to scale and maximize the uptime of such a caching system.

Whatever your approach is, think always about the phoenix; that is, you should be able to
reconstruct the data from the ashes (and quickly). In this way, you can maximize scaling,
and as a positive side effect, you will boost availability and disaster recovery capabilities.
As highlighted in the Introducing streaming section, events (and the event sourcing
technique) are a good way to implement similar approaches. Indeed, provided that you
have persisted all the changes in your data into a streaming system, such changes could be
replayed in case of a disaster, and you can reconstruct the data from scratch.

Beware of the concept of stickiness (pointing your clients to the same instance whenever
possible). It's a quick win at the beginning, but it may lead you to unbalanced infrastructure
and a lack of scalability. The next foundational aspect of performance is data.

Data

Data is very often a crucial aspect of performance management. Slow access times to the
data you need will frustrate all other optimizations in terms of parallelizing or keeping
interactions asynchronous. Of course, each type of data has different optimization paths:
indexing for relational databases, proximity for in-memory caching, and low-level tuning
for filesystems.

However, here are my considerations as regards the low-hanging fruit when optimizing
access to data:

« Sharding: This is a foundational concept. If you can split your data into smaller
chunks (such as by segmenting your users by geographical areas, sorting using
alphabetical order, or using any other criteria compliant with your data model),
you can dedicate a subset of the system (such as a database schema or a file) to each
data shard.

168 Exploring Essential Java Architectural Patterns

This will boost your resource usage by minimizing the interference between
different data segments. A common strategy to properly cluster data in shards

is hashing. If you can define a proper hashing function, you will have a quick

and reliable way to identify where your data is located by mapping the result of

the hashing operation to a specific system (containing the realm that is needed).

If you still need to access data across different shards (such as for performing
computations or for different representations of data), you may consider a different
sharding strategy or even duplicating your data (but this path is always complex and
risky, so be careful with that).

« Consistency point: This is another concept to take care of. It may seem like a lower-
level detail, but it's worthwhile exploring. To put it simply: how often do you need
your data to persist? Persistence particularly common in long transactions (such as
ones involving a lot of submethods). Maybe you just don't need to persist your data
every time; you can keep it in the memory and batch all the persistence operations
(this often includes writing to files or other intensive steps) together.

For sure, if the system crashes, you might lose your data (and whether to take this
risk is up to you), but are you sure that incongruent data (which is what you'd have
after saving only a part of the operations) is better than no data at all? Moreover,
maybe you can afford a crash because your data has persisted elsewhere and can be
recovered (think about streaming, which we learned about previously). Last but not
least, is it okay if your use case requires persistence at every step? Just be aware of that.
Very often, we simply don't care about this aspect, and we pay a penalty without
even knowing it.

« Caching: This is the most common technique. Memory is cheap, after all, and
almost always has better access times than disk storage. So, you may just want to
have a caching layer in front of your persistent storage (database, filesystem, or
whatever). Of course, you will end up dealing with stale data and the propagation of
changes, but it's still a simple and powerful concept, so it's worth a try.

Caching may be implemented in different ways. Common implementations include
caching data in the working memory of each microservice (in other words, in the
heap, in the case of Java applications), or relying on external caching systems (such
as client-server, centralized caching systems such as Infinispan or Redis). Another
implementation makes use of external tools (such as Nginx or Varnish) sitting in
front of the API of each microservice and caching everything at that level.

Designing for large-scale adoption 169

We will see more about data in Chapter 11, Dealing with Data, but for now, let me give
you a spoiler about my favorite takeaway here: you must have multiple ways of storing
and retrieving data and using it according to the constraints of your use case. Your mobile
application has a very different data access pattern from a batch computation system.
Now, let's go to the next section and have a quick overview of scaling techniques.

Scaling

Scaling has been the main mantra so far for reaching performance goals and is one of the
key reasons why you would want to architect your software in a certain way (such asin a
multi-tier or async fashion). And honestly, I'm almost certain that you already know what
scaling is and why it matters. However, let's quickly review the main things to consider
when we talk about scaling:

« Vertical scaling is, somewhat, the most traditional way of scaling. To achieve better
performance, you need to add more resources to your infrastructure. While it is still
common and advisable in some scenarios (such as when trying to squeeze more
performance from databases, caches, or other stateful systems), it is seldom a long-
term solution.

You will hit a blocking limit sooner or later. Moreover, vertical scaling is not

very dynamic, as you may need to purchase new hardware or resize your virtual
machine, and maybe downtime will be needed to make effective changes. It is not
something you can do in a few seconds to absorb a traffic spike.

« Horizontal scaling is way more popular nowadays as it copes well with cloud and
Paa$ architectures. It is also the basis of stateless, sharding, and the other concepts
discussed previously. You can simply create another instance of a component, and
that's it. In this sense, the slimmer, the better. If your service is very small and
efficient and takes a very short time to start (microservices, anyone?), it will nicely
absorb traffic spikes.

You can take this concept to the extreme and shut down everything (thereby saving
money) when you have no traffic. As we will see in Chapter 9, Designing Cloud-
Native Architectures, scaling to zero (so that no instance is running if there are no
requests to work with) is the concept behind serverless.

170 Exploring Essential Java Architectural Patterns

« We are naturally led to think about scaling in a reactive way. You can get more
traffic and react by scaling your components. The key here is identifying which
metric to look after. It is usually the number of requests, but memory and CPU
consumption are the other key metrics to look after. The advantage of this approach
is that you will consume the resources needed for scaling just in time, hence you will
mostly use it in an efficient way. The disadvantage is that you may end up suffering a
bit if traffic increases suddenly, especially if the new instances take some time to get
up and running.

« The opposite of reactive scaling is, of course, proactive scaling. You may know
in advance that a traffic spike is expected, such as in the case of Black Friday or
during the tax payment season. If you manage to automate your infrastructure in
the right way, you can schedule the proper growth of the infrastructure in advance.
This may be even more important if scaling takes some time, as in vertical scaling.
The obvious advantage of thi